Reports on zurkey bith the R,V or fridtyof Aon en
\square
urve
(4) 12π

REPORTS ON SURVEYS WITH THE R/V "DR. FRIDTJOF NANSEN"

A SURVEY ON THE FISH RESOURCES AT SOFALA BANK - MOZAMBIQUE

$$
\text { MAY-JUNE } 1983
$$

BY

L. Brinca, V. Mascarenhas, B, Palma de Sousa, L. Palma de Sousa, I.M. Sousa, R. Setre and I, Timochin

Instituto de Investigação Pesqueira - Maputo Institute of Marine Research - Bergen
November 1984

$$
9 F 630
$$

CONTENT

Page

1. INTRODUCTION 5.
2. METHODS 5
3. HYDROGRAPHY 6
4. FISH DISTRIBUTION AND ABUNDANCE 7
5. THE SMALL ANCHOVY 11
6. OTHER SMALL PELAGIC FISH 19
7. DEMERSAL FISH 29
8. SHALLOW-WATER SHRIMP 48
9. REFERENCES 56
ANNEXES
Annex l. Record of fishing operation 58
Annex 2. Anchovy - Length distributionand maturity stages 62Annex 3. Small pelagic fish. Lengthdistribution and maturitystages65
Annex 4. Demersal fish. Lengthdistribution and maturitystages71Annex 5. Shallow-water shrimp. Designof survey and worksheet forthe computations74

I. INTRODUCTION

From August 1977 to June 1978 the Norwegian research vessel "Dr. Fridtjof Nansen" surveyed the waters adjacent to Mozambique. The results from this investigation were reported by SETRE and SILVA (1979). The report dealt with the pelagic and demersal fish resources as well as the crustaceans. It also included a brief description of the most conspicuous hydrographic features and some comments on whales.
"Dr. Fridtjof Nansen" returned to Mozambican waters in October 1980 and in September 1982 to carry out an investigation on the small pelagic fish and the shallow-water shrimp resources (BRINCA, REY, SILVA and SETRE, I981, BRINCA, JORGE DA SILVA, SOUSA, SOUSA and SETRE, 1983).

The present report deals with a survey by the "Dr. Fridtjof Nansen" at Sofala Bank during the period 29 May-8 June 1983. The objective was

- to study the distribution and abundance of small pelagic fish,
- to study the distribution and abundance of shallow-water shrimps,
- to carry out oceanographic studies.

The program was executed by a joint team of Norwegian and Mozambican scientists.
2. METHODS

Details of the vessel, the fishing gears and the acoustic equipment are given in BRINCA et al (1983). Further details on the biological methods appear in the chapters 5-8 while Annex 1 gives details on the fishing operations. Fig. I shows the survey routes and the location of the stations.

Fig. 1. Survey routes and grid of stations at Sofala Bank 29 May- 8 June 1983.

3. HYDROGRAPHY

The hydrography of Sofala Bank will be reviewed in a report to be published in the very near future (JORGE DA SILVA, in press). Therefore, the present report includes only the oceanographic observations with no attempt on analysing the data. Figs. 2 and 3 give the surface temperature and salinity respectively. Fig. 4 shows the water colour according to the Forel scale and Fig. 5 the Secchi depth. Three vertical temperature sections appear in Fig. 6. The location of these can be found in Fig. 1.

Fig. 2. Surface temperature distribution - 29 May-8 June 1983.

4. FISH DISTRIBUTION AND ABUNDANCE

Fig. 7 shows the distribution of echo abundance at Sofala Bank during the cruise. The recordings were nearly exclusively made up by pelagic species. North of $17^{\circ} 50^{\prime}$ s the Sardinella spp. and Dussumieria acuta dominated the recordings. The isolated patches along the shore were mainly Pellona ditchela and Thryssa vitrirostris while Decapterus spp. and Rastrelliger sp. were observed near the shelf edge. The largest contribution to the echo abundance came from the Stolephorus spp. In the southernmost area it was not possible to carry out neither bottom nor pelagic trawling

Fig. 3. Surface salinity distribution - 29 May-8 June 1983.
due to the bad bottom conditions. It is therefore not confirmed if these recordings really consisted of Stolephorus sp.

The acoustic abundance estimate was calculated by the equation

$$
B=C \cdot \bar{M} \cdot A
$$

where B is the fish biomass, \bar{M} is the average integrator reading, A the corresponding area and C is a conversion coefficient. The numerical value for C applied in these calculations was

$$
\mathrm{C}=0.8 \cdot \mathrm{I} \text { tonnes } / \mathrm{mm} \cdot(\mathrm{n} . \mathrm{mil})^{2}
$$

Fig. 4. Water colour according to the Forel scale - 29 May-8 June 1983.
when L is the average length in cm of the fish.

If all the recordings in the C areas of Fig. 7 consist of the small anchovy (Stolephorus sp.), this stock size will be about 170,000 tomnes while the sardines of area C amounts to about 20,000 tonnes. For the mackerel, area B, it is not possible to give any abundance estimate due to insufficient coverage of the area. In addition to the patches called areas D in Fig. 7, the Pellona sp. and Thryssa sp. are distributed scattered along the whole coast at depths shallower than 30 m . Calculations based on Fig. 7 will therefore give an underestimate for these species. Most likely, this stock will be of the order of 50,000 tonnes.

Fig. 5. Secchi depth distribution - 29 May-8 June 1983.

Fig. 6. Verticai temperature distribution in three sections indicated in Fig. 1.

Fig. 7. Echo abundance distribution of pelagic fish - 29 May- 8 June 1983.

5. THE SMAL工 ANCHOVY

Introduction

During the present survey anchovy was caught in pelagic trawls (during night time) and in some of the shrimp bottom trawls (during day time).

Using "FAO Species Identification Sheets, 1983" (W. Indian Ocean) the following species were identified:

Stolephorus punctifer

Stolephorus heterolobus

Stolephorus indicus

It was not possible to identify one of the species which occurred in some of the bottom trawls. This species will be referred to in the present report as Species A.

The difference between the two first species, was not detected during the survey. This difference was only detected later, in a sample analysed in the laboratory where the proportion between the S . punctifer and S . heterolobus was $1: 2$. As we do not have samples from other hauls and the majority of samples analysed could have been a mixture of these two species, this group is always referred to as S. punctifer/heterolobus.
S. punctifer, S. heterolobus and S. indicus occurred both in the pelagic and bottom trawls. Species A did not occur in the pelagic hauls.

Catch rates

8 pelagic trawl hauls (during night time) were made. The following table shows the results obtained.

Station number	Latitude	Longitude	Gear depth (m)	Bottom depth (m)	Catch rates kg / h
512	S $17^{\circ} 34$,	E $38^{\circ} 03^{\prime}$	10	31-34	30.8
517	S $18^{\circ} 07$ '	E $37^{\circ} 14^{\prime}$	21-24	21-24	41.6
523	S $18^{\circ} 34^{\prime}$	E $36^{\circ} 55^{\prime}$	8-14	28-29	480.0
529	S $19^{\circ} 01$	E $36^{\circ} 48^{\prime}$	10-43	36-43	127.5
530	S $18^{\circ} 59^{\prime}$	E $36^{\circ} 42^{\prime}$	20-24	34-38	488.0
539	S $19^{\circ} 23$ '	E $36^{\circ} 52^{\prime}$	10	73	30.0
540	S $19^{\circ} 12^{\prime}$	E $36^{\circ} 07^{\prime}$	10	25	120.0
545	S $19^{\circ} 49^{\prime}$	E $36^{\circ} 17^{\prime}$	15	65-68	11.4

Anchovy was caught in seven Out of 44 shrimp bottom trawl hauls (during day time). The following table shows the catch rates obtained.

Station number	Latitude	Longitude	Gear depth (m)	Catch rates kg / h
499	$\mathrm{~S} 17^{\circ} 01^{\prime}$	$\mathrm{E} 39^{\circ} 09^{\prime}$	13	0.5
501	$\mathrm{~S} 17^{\circ} 06^{\prime}$	$\mathrm{E} 38^{\circ} 50^{\prime}$	$9-10$	2.2
504	$\mathrm{~S} 17^{\circ} 16^{\prime}$	$\mathrm{E} 38^{\circ} 29^{\prime}$	15	0.2
525	$\mathrm{~S} 18^{\circ} 17^{\prime}$	$\mathrm{E} 36^{\circ} 55^{\prime}$	$18-19$	31.2
536	$\mathrm{~S} 19^{\circ} 05^{\prime}$	$\mathrm{E} 36^{\circ} 03^{\prime}$	19	2.4
541	$\mathrm{~S} 19^{\circ} 16^{\prime}$	$\mathrm{E} 35^{\circ} 52^{\prime}$	$20-21$	3.0
550	$\mathrm{~S} 20^{\circ} \mathbf{1 1}^{\prime}$	$\mathrm{E} 34^{\circ} 53^{\prime}$	5	5.2

Fig. 8 shows the distribution of the catch rates obtained with the two different types of gear.

Fig. 8. Stations with catch of anchovy.

Biological analysis of the main species

At each station with a significant catch of anchovy, samples were analysed. For all species length was recorded by 0.5 cm groups. For S. punctifer/heterolobus maturity stages were also recorded using the maturity scale included. in Annex 1 , Table 2.

Length distribution was analysed by haul. Fig. 9 shows the mean length by haul obtained in pelagic trawls (A) and in bottom trawls (B).

Fig. 9. Mean total length/haul of S. punctifer/heterolobus.
S. indicus (*) and Species A (**).
A) Pelagic trawl hauls. B) Shrimp bottom trawl hauls.

Comparing the distribution areas of the pelagic fish obtained during the present survey (Fig. 7), with the position of the control pelagic trawls (Fig. 1), the samples which seem to belong to the same distribution area were joined. The length distribution, modal size and mean estimates obtained (although not weighted by the stock size of each area) are approximations of the structure of the population of those areas.

Some samples were brought to the laboratory to calculate lengthweight relationship. For each species this relationship was obtained by applying the functional linear regression to data, transformed in logarithms.

S. punctifer/heterolobus

This group dominated the catches. It was present from latitude S $17^{\circ} 34^{\prime}$ to $S 20^{\circ} 11^{\prime}$.

Total length of 572 individuals caught in 6 pelagic hauls, was measured (Annex 2, Table 1). The sizes ranged from 2.5 to 9.5 cm long, with the modes varying between the classes $3.5-4.0$ and $8.0-8.5 \mathrm{~cm}$.

From bottom trawls a total of 313 individuals were measured (Annex 2, Table 1). The size ranged from 4.0 to 9.0 cm long, with the modes varying between the classes $5.0-5.5$ and $8.5-9.0 \mathrm{~cm}$.

As already mentioned, the samples which seemed to belong to the same distribution area were joined and the results are shown in the following table:

| Area | Length range
 Class Mark
 (cm) | Modal size
 Class Mark
 (cm) | Mean
 size
 (cm) |
| :---: | :---: | :---: | :---: | :---: |
| From Quelimane to Zambezi River | $2.75-9.75$ | 4.25 and 7.75 | 7.8 |
| In front of Zambezi River | $6.25-9.25$ | 8.25 | 7.7 |

Gonads of 382 individuals were taken for analysis of sex and maturity stages. It was tried, for the first time to use a simplified maturity stage table for Stolephorus (TIEWS, RONOUILLO and SANTOS, 1968, Annex 2, Table 2). The results must be considered as preliminary.

The relative percentage of each maturity stage, males and females separated, are shown in the following table.

Another species, not identified and referred to as species A occurred only in three bottom trawl hauls at depths lower than 20 meters, and in negligible quantities.

The total length of 267 individuals was measured (Annex 1, Table 1). The range of sizes was from 4.5 to 7.0 cm long with the estimated mean of 5.8 cm .

Length-weight relationship was studied and graphically represented in Fig. 13. The results are as follows:
$\log W=3.092 \log L T-2.227$
$n=293$
$r=0.9752$

Fig. 13. Species A - Length-weight relationship.
6. OTHER SMALL PELAGIC FISH

Catch composition

Only catches from bottom hauls were considered in this analysis. As in the previous surveys conducted by "Pantikapey" and "S. Rybak" the area covered was divided into the following subareas: Machese, Beira, Quelimane I, Quelimane II and Angoche + Moebase.

Several families are included in the group (Table l). Families Clupeidae, Engraulidae, Leiognathidae and Sphyraenidae were the most representative in the catches. They were mainly caught, at depths shallower than 25 meters where total catch amounted to about 6.5 tons. The best catch rates were obtained in the subareas Beira and Quelimane I at depths shallower and deeper than 25 meters, respectively, where the family Clupeidae dominated the catches. In subareas north of Zambezi river, Angoche + Moebase and Quelimane II, families Clupeidae and Carangidae were the most important in the catches.

Detailed information on sardines and ponyfishes is presented in the next chapters. The information concerning the other small pelagic fish is found in Annex 3.

Catch rates, distribution and biology of the main families

Sardines
In this group two families were included, Clupeidae and Engraulidae, excluding Stolephorus sp. which was considered in the group of anchovies as in the previous reports on surveys with the R/V Dr. Fr. Nansen.
A. Family Clupeidae
a) Catch rates and distribution

The most representative species of the family Clupeidae is Pellona ditchela. It was found in the whole surveyed area at
depths from 6 to 36 meters. The highest catch rates were obtained at depths above 20 meters although in one single haul at 23-26 meters depth a catch of 516 kg was recorded (Fig. 14, Table 2).

Table l. Composition of small pelagic fish catches (kg / h) by subarea and depth interval (meters).

		Quelimane II		Quelimane I		Machese		Beira	Total Area	
	<25	<25	725	<25	>25	<25	>25	<25	< 25	725
Ariommidae	0.07	0.12	0.50	-	4.00	0.81	-	2.53	0.67	1.20
Carangidae	43.38	8.20	6.56	15.86	17.70	11.49	3.20	36.01	21.02	8.93
Clupeidae	7.17	67.10	10.54	44.11	344.53	86.30	40.92	274.92	98.58	46.82
Chirocentridae	1.54	0.39	-	0.11	-	2.26	-	0.81	1.08	-
Engraulidae	5.89	20.98	7.91	26.75	70.67	40.94	62.94	66.57	36.23	44.52
Formionidae	1.90	10.00	-	5.12	-	1.18	2.47	2.99	3.96	0.74
Gerreidae	2.95	-	-	-	-	0.31	-	0.76	0.64	-
Leiognathidae	28.86	9.37	0.21	1.75	33.60	11.46	-	61.27	19.72	10.08
Scombridae	5.17	0.92	0.11	0.84	3.47	0.70	0.48	9.56	2.84	1.24
Scomberomoridae	5.90	3.22	9.01	4.34	-	5.42	1.20	18.93	7.18	3.96
Sphyraenidae	6.38	0.08	1.17	0.76	13.50	0.25	2.45	201.59	35.86	5.49
Others	1.00	0.53	-	0.35	-	1.26	0.79	1.29	0.88	0.24
TOTAL	110.21	60.49	36.01	99.99	487.47	162.38	114.45	677.23	228.41	123.22
Sharks and Rays	0.47	1.79	2.04	3.76	-	0.84	-	-	1.59	0.82
TOTAL CATCH (Kg)	838.75	599.09	144.94	958.01	1122.36	1143.39	551.56	2900.71	6439.95	1818.86
Hours of hauling	3	3.25	2	5.5	1.5	5	1.5	3.5	20.25	5
Catch rate (kg / H)	279.58	.184.34	72.47	174.18	748.24	228.68	367.71	828.77	318.02	363.77
Nr . of Hauls	6	7	4	11	3	10	3	7	34	17

Table 2. Catch rates of the main species of the family Clupeidae by depth and subarea.

	B. + Machese		Quel. I		Quel. II		Ang. + Moeb.		Total	
	< 20	21-45	<20	21-4.5	<20	21-45	< 20	21-45	<20	21-45
P. ditchela	162.7	1.2	53.3	206.4	78.9	0.04	8.0	-	96.6	86.21
H. kelee	-	-	0.4	-	0.04	-	-	-	0.1	-
Sardinella spp.	33.0	-	12.2		0.4	10.5	0.4	-	17.0	3.5
Total (all species)	196.8	20.6	66.7	206.4	79.7	24.9	15.7	-	115.7	97.7
Hours of hauling	7.00	1.00	3.42	2.50	2.75	2.00	3.00	. 50	16.17	6.00

Fig. 14. Catch rates of P. ditchela and length composition by subarea.

The remaining species of this family, namely Hilsa kelee, Dussumieria acuta, Sardinella gibbosa, Sardinella sp., appeared in the catches in very low quantities. They were mainly found at depths above 20 meters.

This distribution is in good accordance with the results of the previous surveys.
b) Size composition of P. ditchela

The length distributions in each subarea were combined. For each haul the number of individuals measured was extended to the total catch in numbers per hour of trawling and the average catch in numbers per hour calculated for each length class. The percentage obtained in each class is represented in Fig. 14.

Small individuals were caught in the subarea Angoche + Moebase and Machese + Beira and the large ones between Quelimane II and Machese + Beira.

During the last "Fr. Nansen" survey, in September 1982 small fish were found in the subareas Quelimane I and II.
c) Growth curve of P. ditchela

A total of 55 otoliths were used for age readings by counting the number of daily growth rings.

The von Bertalanffy growth equation was fitted to the data and the following equation was obtained:

$$
L_{t}=24.0\left(1-e^{-0.88(t-0.23)}\right)
$$

where t is time in years and L_{t} the length in centimeters at time t.

Fig. 15 shows the growth curve of P. ditchela.

Fig. 15. Growth curve of P. ditchela,
d) Gonad development of p. ditchela

A total of 1027 gonads were examined and the maturity stages analysed (Table 3L. Most of gonads were immature (stage II) or preparing for spawning (stages III and IV).

Fish smailer than 15 cm were mainly immature. Females in spawning were caught at nearly all stations where this species was present but the higher concentrations were found between Zambezi river and Quelimane (Fig. 16). Most of them were of sizes larger than 15 cm .

Fig. 16. Occurrence of females of P. ditchela in spawning.

Table 3. Relative percentage of maturity stages of P. ditchela by sex.

FEMALES						MALES					
I	II	III-IV	V	VI	n	I	II	III-IV	v	VI	n
-	31.9	30.4	30.4	7.3	533	-	15.8	17.6	59.5	7.1	494

Gonadasomatic index (gonad weight/total weight x l00) was estimated for each sex.

Females: $\overline{\text { GSI }}=1.3$
$\mathbf{s}=1.36$
$n=254$

Males: $\quad \overline{\text { GSI }}=1.4$

$$
\mathbf{s}=4.95
$$

$$
\mathrm{n}=234
$$

B. Family Engraulidae (excluding Stolephorus sp.)
a) Catch rates and distribution

This family was mainly represented by Thryssa vitrirostris which appeared together with P. ditchela. The best catch rates were obtained at depths above 20 meters, between Beira + Machese and Quelimane II (Table 4, Eig. 17). However, only in one haul at 23-26 meters depth a catch of 104 kg was obtained.

Other species of this family were caught, namely T. setirostris.

Table 4. Catch rates of T. vitrirostris by depth and subarea.

	B. + Machese		Quel. I		Quel. II		Ang. + Moeb.		Total	
	< 20	21-45	<20	21-45	<20	21-45	< 20	21-45	<20	21-45
T- vitrirostris	60.1	-	35.0	41.6	24.3	+	, 5.4	-	38.6	17.3
Totall (all species)	62.9	61.5	41.6	42.1	24.8	7.9	7.0	-	41.6	30.4
Hours of hauling	7.00	1.00	3.42	2.50	2.75	2.00	3.00	. 50	16.17	6.00

Fig. 17. Catch of T. Vitrirostris and length composition by subarea.
b) Size composition of T. vitrirostris

Length samples were combined by three subareas and the percentage of catch in numbers per hour of trawling of each length class represented in Fig. 17. At least two modes are present in each distribution.

The juveniles seem to occur in the whole area surveyed. In the last survey by "Fr. Nansen" juveniles were mainly found in the subareas Quelimane I and Quelimane II.
c) Gonad development of T. vitrirostris

A total catch of 785 gonads were examined and the relative percentage of maturity stages by sex determined (Table 4). Most
of the fish were immatures (stage II) or preparing for spawning (stages III and IV).

Table 5. Relative percentage of maturity stages by sex of T. vitrirostris.

FEMALES						M ALES					
I	II	III-IV	V	VI	n	I	II	III-IV	V	VI	n
-	48.3	32.0	16.6	3.1	416	-	39.0	26.0	33.1	1.9	369

The gonadosomatic index was estimated for males and females separately. The results were:

Females: $n=221$

$$
\begin{aligned}
\overline{\mathrm{GSI}} & =0.6 \\
\mathbf{s} & =0.59
\end{aligned}
$$

Males:

$$
\begin{aligned}
\mathrm{n} & =195 \\
\overline{\mathrm{GSI}} & =0.6 \\
\mathbf{s} & =0.45
\end{aligned}
$$

Ponyfishes

a) Catch rates and distributions

Two species of the family Leiognathidae were abundant in the catches: Leiognathus equulus and Secutor insidiator. The best catches were obtained at depths above 20 meters in the subarea Beira + Machese. Catch rates of S . insidiator were also high in Quelimane II and Angoche + Moebase, as was found in the previous surveys (Figs 18, 19, Table 6).

Table 6. Catch rates of the species of family Leiognathidae by depth and subarea.

	B + Machese		Quel. I		Quel. II		Ang. + Moeb.		Total	
	< 20	21-45	<20	21-45	<20	21-45	<20	21-45	< 20	21-45
L. equulus	11.5	-	0.5	6.5	-	-	4.2	-	5.9	2.7
S. insidiator	26.0	0.9	0.6	14.5	10.8	0.2	25.5	-	18.0	6.3
G. minuta	1.3	-	1.5	0.2	0.3	-	4.2	-	1.7	+
Total (all species)	$38.8{ }^{\text { }}$	0.9	2.6	21.1	11.1	0.2	33.9	-	25.5	9.0
Hours of hauling	7.00	1.00	3.42	2.50	2.75	2.00	3.00	. 50	16.17	6.00

Fig. 18. Catch rates of L. equulus by subarea.

Another species of this family, Gazza minuta was also caught but in very low quantities.
b) Size composition of I. equulus and S. insidiator

A few samples of I. equulus were collected in the subareas Angoche + Moebase and Beira + Machese (Annex 3).

The length samples of S . insidiator were combined by subareas and the percentage of catch in numbers per hour of each length class represented in Fig. 19.

Fig. 19. Catch rates of 5 . insidiator and length composition by subarea.
c) Gonad development of L. equulus

A few gonads were examined and the relative percentage of maturity stages by sex determined (Table 7). Most of the fish was immature (stage II).

Table 7. Relative percentage of maturity stages of L . equulus by sex.

FEMALES						MALES					
I	II	III-IV	V	VI	n	I	III	III-IV	V	VI	n
-	73.6	19.1	7.3	-	110	-	72.0	22.0	6.1	-	82

Other small pelagic species
All collected data of other pelagic species are included in Annex 3.

7. DEMERSAL FISH

The analysis of demersal fish is based on catches from the shrimp trawi.

As in previous surveys, the Sofala Bank was divided in four subareas: Angoche-Moebase $\left(16^{\circ} 20^{\prime}-16^{\circ} 50^{\prime}\right)$, Quelimane II ($17^{\circ} 20^{\prime}-$ $\left.17^{\circ} 50^{\prime}\right)$: Quelimane I ($17^{\circ} 50^{\prime}-16^{\circ} 50^{\prime}$) and Moebase-Beira ($18^{\circ} 50^{\prime}-$ $21^{\circ} 00^{\prime}$). Angoche-Moebase and Machese-Beira were grouped and considered as two subareas due to the low number of trawl stations.

Catch composition and distribution

Fig. 20 shows that the demersal fish occurs all over the surveyed area with the best catches in Ouelimane I and Beira.

Fig. 20. Distribution of demersal fish.

Table 8 gives the composition of the catches, splitted by depth and by subarea. Pelagic fish usually dominated, the catches except for the catches in the Angoche and Moebase areas where demersal fish constitute approximately 65% of the catch. At depths shallower than 25 meters, the Sciaenidae is the dominant group in Quelimane II, Quelimane I and Beira. In Machese the family Trichiuridae dominates. Besides this family, Polynemidae made significant contribution in Quelimane II, Trichiuridae in Quelimane I and Pomadasyidae in Beira. Mullidae was the most important family in Angoche-Moebase together with Polynemidae.

Table 8. Catch composition (kg / h) by depth and subarea.

Catch composition	Ang + Moebase	Quelimane II		Quelinane I		Machese		Beira	Sofala Bank	
	<25	<25	>25	<25	>25	<25	>25	<25	<25	>25
Bothidae	-	\sim	0.12	-	-	0.06	+	-	0.03	0.07
Cynoglossidae	2.15	2.75	0.03	4.08	-	1.56	-	1.04	2.43	0.02
Drepanidae	0.34	1.38	-	0.06	-	0.45	-	-	0.48	-
Iutjanidae	-	-	-	-	-	-	-	-	-	-
Mullidae	139.34	1.81	0.35	12.65	14.60	10.37	0.24	5.69	28.93	0.96
Nemipteridae	-	-	0.27	0.08	0.13	-	-	-	0.11	0.04
Polynemidae	10.22	10.16	-	0.83	6.7	0.59	-	17.44	6.53	1.81
Pomadasyidae	8.77	5.21	-	2.21	-	2.48	-	33.68	9.17	-
Priacanthidae	-	-	-	-	-	-	-	-	-	-
Psettodidae	0.03	0.42	-	-	-	0.11	-	3.71	0.74	-
Sciaenidae	3.03	27.03	-	29.05	8.27	11.86	-	47.53	23.82	-
Serranidae	-	-	7.75	-	$-$	2.64	-	-	2.64	4.77
Sillaginidae	0.3	0.31	-	-	-	0.6	-	2.61	0.74	-
Sparidae	-	-	3.03	-	3.53	-	-	-	1.86	1.95
Synodontidae	1.23	0.90	0.19	1.72	0.32	2.8	-	0.95	1.64	0.17
Theraponidae	2.73	2.83	-	0.79	6.67	1.43	-	15.9	5.44	1.81
Trichiuridae	0.3	5.78	-	22.03	6.67	24.45	-	6.09	8.39	3.64
* Commercial	0.2	2.47	4.58	2.69	12.12	4.77	-	15.23	4.97	3.73
** Non commercial	1.17	0.53	0.02	0.65	-	0.48	-	1.00	0.72	0.04
Total demersal	170.31	60.96	16.25	67.32	94.14	64.65	0.24	150.87	99.98	25.32
Sharks and Rays	0.47	1.79	2.04	3.76	-	0.84	-	-	1.59	0.82
Total catch (Kg_{g})	838.75	599.09	144.94	958.01	1122.36	1143.39	551.56	2900.71	6439.95	1818.86
Hours of trawling	3	3.25	2	5.5	1.5	5	1.5	3.5	20.25	5
Catch rate (Kg / h)	279.58	184.33	72.47	174.18	748.24	228.68	367.71	828.77	318.02	363.77
n° of hauls	6	7	4	11	- 3	10	3	7	34	17

[^0]At depths of more than 25 meters, Mullidae dominated in Quelimane I and Machese while Serranidae was the most important family in ouelimane II. In general, the main families in shallow waters (above 25 m) are Sciaenidae, Mullidae and Trichiuridae and in deeper waters (below 25 m), Mullidae is the dominant family.

Sciaenidae

Among the demersal fish this family had the highest yields in waters shallower than 25 m and the best catches were obtained at Quelimane I and Beira (Fig. 21).

Fig. 21. A - Distribution of family Sciaenidae (catch per hour). B - Distribution of Johnius belengerii (catch per hour).

Mainly three species were represented: J. belengerii, O. ruber and J. dussumierii.

Fig. 22. Distribution of Otolithes ruber (catch per hour).

In table 9 it can be seen that J. belengerii occurs from Quelimane II to Beira subarea, with the best catches in Quelimane I. In Beira, one trawl station had a catch rate of more than $100 \mathrm{~kg} / \mathrm{h}$ (Fig. 21 B) . O. ruber occurs from Moebase to Beira, with best yields in Quelimane I and Beira. In Quelimane II, one trawl station had a catch rate of more than $50 \mathrm{~kg} / \mathrm{h}$ (Fig. 22).

Table 9. Species composition from family Sciaenidae splitted by species.

Species composition	Ang + Moebase	Quelimane II		Quelimane I		Machese		Beira	Sofala Bank	
	<25	<25	>25	<25	>25	<25	>25	<25	<25	>25
J. belengerii	-	6.69	-	19.20	0.27	6.41	-	20.84	11.47	-
0. ruber	1.77	15.23	-	12.11	8.0	5.32	-	20.83	10.91	-
J. dussumierii	1.26	5.11	-		-	0.13	-	5.86	2.05	-

Johnius dussumierii is present in Angoche-Moebase, Quelimane II, Machese and Beira. The first subarea was not included as the catches were small. Looking at table 9, it can be seen that the best catches were found in Ouelimane II and Beira.

Pomadasyidae

This family occurs from Moebase to Beira with the best catch rates in Beira (328 kg was caught at one trawl station) (Fig. 23A). Three species of this family occurred in this survey: P. maculatus, P. hasta and R. stridens; of which the first is the most important. Table 10 gives the catch composition of the family pomadasyidae. Pomadasys maculatus is present from Moebase to Beira with the best catches in Beira. Looking at table 10 Rhonciscus stridens occurred only in Angoche-Moebase with a catch rate of up to $352 \mathrm{~kg} / \mathrm{h}$.

Fig. 23. A - Distribution of family Pomadasyidae (catch/hour). B - Distribution of Pomadasys maculatus (catch/hour).

Table 10. Species composition from family Pomadasyidae splitted by species.

Species composition	Ang + Moebase	Quelimane II		Quelimane I		Machese		Beira	Sofala Bank	
	<25	<25	>25	<25	>25	<25	>25	<25	<25	>25
P. maculatus	4.95	1.57	-	0.14	-	2.24	-	33.44	7.36	-
P. hasta	0.30	3.64	-	2.07	-	0.24	-	0.24	1.29	-
R. stridens	3.52	-	-		-		-	-	0.52	-

Mullidae

This family is present from Moebase to Machese-Beira with the best catches in Moebase ($\mathrm{F}^{\prime} 1 \mathrm{~g} .24 \mathrm{~A}$) at $9-16$ meters.

Fig. 24. A - Distribution of family Mullidae (catch/hour).
B - Distribution of Upeneus vittatus (catch/hour).

Three species of this family occurred: U. vittatus, U. bensasi and U. sulphureus. The first one was the most important. Table 11 gives catch composition of the family Mulidiae. U. vittatus occurs from Moebase to Machese Beira with best catches in Moebase (137.37 kg) (Fig. 24B) . U. bensasi occurs from Moebase

Table il. Species composition from family Mullidae splitted by species.

Species composition	Ang + Moebase	Quelimane II		Quelimane I		Machese		Beira	Sofala Bank	
	<25	<25	>25	<25	>25	<25	>25	<25	<25	>25
U. vittatus	137.37	1.66	-	12.64	0.07	10.17	0.24	5.6	27.49	0.46
U. sulphureus	0.02	0.15	-	-	-	0.2	-	-	0.08	-
Others	2.45	-	0.35	0.01	14.53	-	-	0.09	1.36	0.5

to Quelimane I. The catch rates were insignificant.

Synodontidae
This family occurs from Moebase to Machese-Beira with catch rates up to $10 \mathrm{~kg} / \mathrm{h}$, excepting two trawl stations, in Quelimane II and Machese at depths of more than 25 meters (Fig. 25A). Three species occurred in this family: Saurida undosquamis, Saurida tumbil and Trachinocephalus myops. Looking at table 12, Saurida undosquamis occurred in all subareas with the best catches in Machese.

Fig. 25. A - Distribution of family Synodontidae (catch/hour).
B - Distribution of family Trichiuridae (catch/hour).

Table 12. Species composition from family Synodontidae splitted by species.

Species composition	Ang + Moebase	Quelimane II		Quelimane I		Machese		$\begin{aligned} & \text { Beira } \\ & \hline<25 \end{aligned}$	Sofala Bank	
	<25	<25	>25	<25	>25	<25	>25		<25	>25
S. undosquamis	0.48	0.05	-	0.27	0.32	2.47	-	0.95	0.92	0.1
S. tumbil	0.73	0.85	0.14	1.45	-	0.33	-	-	0.72	0.05
T. myops	0.02	-	0.05	0.001	-	-	-	-	+	0.02

Trichiuridae

This family occurred from Quelimane II to Machese Beira with the best catch rates ($11.4-46.0 \mathrm{~kg} / \mathrm{h}$) in Quelimane I at 25 meters depth (Fig. 25B).

Polynemidae

This family occurs from Moebase to Machese Beira. Generally the catch rates were less than $10 \mathrm{~kg} / \mathrm{h}$ (Fig. 26).

Fig. 26. Distribution of family Polynemidae (catch/hourl..

Cynoglossidae

In table 8 , it can be seen that best catch rates were found at Quelimane I, in waters shallower than 25 meters.

Theraponidae

Table 8 shows that the best catches per hour of this family were found at Beira at depths lower than 25 meters.

Abundance

A crude estimate for the demersal stock size can be obtained by the "swept area" method. The average catch rate for waters shallower than 25 m was found to be $99.98 \mathrm{~kg} / \mathrm{h}$.

The area of this zone is $14502 \mathrm{~km}^{2}$. The average catch rate for waters deeper than 25 m was found to be $25.32 \mathrm{~kg} / \mathrm{h}$. The area of this zone is $3688 \mathrm{~km}^{2}$. For the calculation of the swept area the following values were considered: horizontal opening of the net 18 meters and trawling speed 2.8 knots. The following table shows the biomass estimates obtained, considering three different values of the efficiency coefficient, q, of the trawl. For a covered area of $18170 \mathrm{~km}^{2}$, a minimum biomass estimate of 16519 tonnes was obtained (with $q=1$) and a maximum estimate of 55.064 tonnes was obtained (with $q=0.3$).

Table 13. Calcuidation of mean biomass using different efficiency coefficient.

					Mean biomass (tonnes)			
	$25 \mathrm{~m}<$	$25 \mathrm{~m}>$	Total					
0.3	51750	3314	55064					
0.5	31050	2000	33050					
1	15525	994	16519					

Johnius belengerii

Total length range from $4-20 \mathrm{~cm}(\overline{\mathrm{LT}}=11.32)$ with most of the individuals (79.87%) being between $7-14 \mathrm{~cm}$. Fig. 27 shows that the mean length varies in the three subareas, and the biggest specimens are found in Machese-Beira. The presence of the smallest individuals in Quelimane I, suggests that this is a recruitment area. The same result was observed in the SEBASTOPOLSKY RYBAK samples (TIMOCHIN, SOUSA et al., l983).

The length-wejght relationship was studied for females and males and the functional regression was applied (Fig. 28).

$\log W=-1.966015+3.104643 \log L$

teg $\omega_{x}-1.955772 \cdot 3.080012 \log 6$
Fig. 28. Length-weight relationship of J. belengerii.

The results are as follows:

$$
\left.\begin{array}{rl}
\text { Females: } \mathrm{n} & =182 \\
\mathrm{r} & =0.975385 \\
\text { Iog } W & =-1.955772+3.090012 \log \mathrm{~L} \\
\text { Males: } \quad \mathrm{n} & =193 \\
\text { log } W & \mathrm{r}
\end{array}\right)=0.982327 .
$$

At the Sofala bank, females generally were at maturity stages 3 and 4; while males were at stages $2-3$ and 4 , excepting ouelimane II subarea, where 58.5% were at stage 2 (Table 14). Females were found at spawning in Ouelimane I and Machese, and males only in the last subarea.

Table 14. Relative frequencies ($\%$) of maturity stages of J . belengerii by subarea.

	Females									Males						
	Juv	2	2-3	3	3-4	4	5	6-3	n	2	$2-3$	3	3-4		5	n
Quelimane II \% (in n°)	8.3	32.8	5.7	20.0	22.9	18.6	-	-	70	58.5	17.1	24.4	-	-	-	41
Quelimane I \% (in no ${ }^{\text {O }}$)	2.5	30.0	3.1	22.3	12.9	30.5	1.2	-	256	36.4	12.0	26.7	0.9	24.0	-	217
Machese \% (in x)	4.8	41.7	-	19.4	-	27.8	8.3	2.8	36	44.0	16.7	17.8	-	13.1	8.3	84
Reira \% (in $\mathrm{m}^{\text {g }}$)	0.3	19.7	3.0	48.5	3.0	25.8	-	-	65	3.2	14.5	66.2	-	16.1	-	62
Total \% (in no)	3.5	29.9	3.3	25.7	11.9	27.6	1.4	0.2	428	35.1	13.9	30.7	0.5	18.1	1.7	404

Gonadosomatic index was estimated for both females and males and the results were:

$$
\begin{aligned}
\text { Females: } \mathrm{n} & =64 \\
\overline{\mathrm{GSI}} & =1.53 \\
\text { Males: } \quad \mathrm{n} & =36 \\
\overline{\mathrm{GSI}} & =0.29
\end{aligned}
$$

For all subareas the stomach contents were predominantly shrimps, and the maximum frequency of occurrence was 27.3\%.

Otolithes ruber

Total length varies from $5-38 \mathrm{~cm}(\overline{I T}=19.15)$ with most of the individuals (54.24\%) being between $15-22 \mathrm{~cm}$. The length varies in all subareas, and the biggest specimens were found in Machese-Beira (Fig. 29).

For the same reason as for Johnius belengerii, Quelimane I, seems to be a recruitment area. The same result was observed with S. RYBAK (TIMOCHIN and SOUSA et al., 1983).

Fig. 29. Length frequency distribution of Otolithes ruber.

The length-weight relationship was studied for females and males (Fig. 30). The equations were:

Females: $\mathrm{n}=115$

$$
r=0.934980
$$

$\log W$

$$
=-1.971848+3.001492 \log L
$$

Males: $n=138$ $r=0.954251$
$\log W$

$$
=-2.117650+3.101417 \log \mathrm{~L}
$$

Fig. 30. Length-weight relationship of o. ruber.

Generally, females were at maturity stages 3 and 4 , and males at stages $2-3$ and 3 , excepting Quelimane I and Machese subareas, where the major number of specimens (males and females) were at stage 2 (Table 15).

Gonadosomatic index was estimated for males and females.
Females: $\mathrm{n}=107$

$$
\overline{\mathrm{GSI}}=1.01
$$

Males: $n=91$

$$
\overline{\mathrm{GSI}}=0.34
$$

Table 15. Relative frequencies (\%) of maturity stages of O . ruber by subarea.

Maturity	Females								Males								
Subareas	2	$2-3$	3	3-4	4	4-5	5	n	2	$2-3$	3	3-4	4	4-5	5	n	Juv
Moebase (\% in n°)	29.2	12.5	33.3	20.8	4.2	-	-	24	7.2	21.4	35.7	35.7	-	-	-	14	9.5
Quelimane II (\% in n°)	19.7	16.9	38.0	14.1	11.3	-		71	30.0	22.0	36.0	2.0	10.0	-	-	50	11.0
Quelimane I (\% in n O)	59.3	3.6	21.0	3.6	12.0	-	0.6	167	50.9	6.8	17.4	0.6	21.1	-	3.1	161	5.7
Machese (\% in n°)	53.6	-	14.3	-	30.3	-	1.8	56.	43.9	2.4	19.6	-	31.7	-	2.4	41	-
Beira (\% in n O)	2.2	6.7	37.8	13.3	37.8	-	2.2	45	2.5	5.0	32.5	-	55.0	-	5.0	40	-
Total (\% in n°)	41.6	6.6	26.2	$7 \cdot 4$	17.4	-	0.8	363	38.2	9.2	23.5	2.3	24.2	-	2.6	306	5.8

Johnius dussumierii

Total length varies from $8-21 \mathrm{~cm}(\overline{\mathrm{LT}}=14.16)$ with most of the individuals (73.04% being between $12-16 \mathrm{~cm}$ (Fig. 31). The comparison between subareas is not possible as samples are quite different.

Fig. 31. Length frequency distribution of Johnius dussumierii.

In Ouelimane II, both sexes were at maturity stages 2,3 and 4 but the majority of females (38.4%) and males (53.7\%) were at stage 3 . In MacheseBeira, both sexes were at stages 2,3 and 4 , however, the majority of females (43.4\%) were at stage 4 , while males (48.3\%) were at stage 3 .

Gonadosomatic index was estimated for males and females.

$$
\begin{aligned}
\text { Females: } \mathfrak{n} & =46 \\
\text { GSI } & =1.13 \\
\text { Males: } \quad \mathfrak{n} & =46 \\
\overline{\text { GSI }} & =0.28
\end{aligned}
$$

For Quelimane II and Machese-Beira, the main component of stomach contents is shrimps which has a frequency of occurrence of 12.8 and 36.4% respectively.

Pomadasys maculatus

Total length range from $5-21 \mathrm{~cm}$ ($\overline{\mathrm{LT}}$ = 12.35), with most of the individuals (79.11%) being between $9-15 \mathrm{~cm}$. In Fig. 32 it can be seen that mean length is more or less similar in all subareas, except in Ouelimane I, where the mean length is reduced. It seems that this is a recruitment area for this species. The same situation was found for other species.

Fig. 32. Length frequency distribution of pomadasys maculatus.

Fig. 33. Length-weight relationship of P. maculatus.

The length-weight relationship was studied for males and females (Fig. 33) the equation follows:

Females: $\mathrm{n}=91$

$$
r=0.991174
$$

$\log W \quad=-1.774875+2.992047 \log L$

$$
\begin{aligned}
&\text { Males: } \left.\quad \begin{array}{rl}
\mathrm{n} & =152 \\
\log \mathrm{~W} & \\
& =-1.670804+2.898801 \log \mathrm{~L} \\
&
\end{array}\right)=-988976 \\
&
\end{aligned}
$$

Generally for Sofala bank, females were at maturity stage 2. In Quelimane II, however, the majority of the females were at stages $2-3$ and 3-4. In Angoche-Moebase and Quelimane I, males were at stage 2, while in Machese-Beira and Quelimane II they were at stages 3 and 4 (Table 16).

Table 16. Relative frequencies (\%) of maturity stages of pomadasys maculatus.

$\bigcirc{ }^{-}$Matuxity	Females									Males							
Subareas ${ }^{\text {Stages }}$	Juv	2	2-3	3	3-4	4	4-5	5	n	2	2-3	3	3-4	4	4-5	5	n
Angoche + Moebase \%(in n ${ }^{\text {g }}$)	13.5	53.3	2.2	20.0	14.1	8.2	1.5	0.7	135	50.0	4.1	21.2	15.8	8.9	-	-	146
Quelimane II \%(in n^{O})	5.0	36.3	18.2	18.2	27.3	-	-	-	11	25.9	11.1	59.3	-	3.7	-	-	27
Quelimane I \% (in n°)	9.2	89.2	2.7	8.1	-	-	-	-	37	78.6	-	19.0	2.4	-	-	-	42
Machese+Beira \%(in n°)	4.4	54.9	6.2	27.4	1.8	6.2	-	3.5	113	42.5	2.8	26.5	2.8	21.5	-	3.9	181
Total \% (inn ${ }^{\text {O }}$)	8.5	57.7	4.4	21.3	8.1	6.1	0.7	1.7	296	48.0	3.5	26.0	7.1	13.6	-	1.8	396

In Machese-Beira, both sexes were at spawning. Gonadosomatic index was estimated for males and females. The results follows:

$$
\begin{aligned}
\text { Females: } \mathrm{n} & =45 \\
\overline{\mathrm{GSI}} & =0.84 \\
\text { Males: } \quad \mathrm{n} & =59 \\
\overline{\mathrm{GSI}} & =0.54
\end{aligned}
$$

The stomach contents was composed of shrimps and fish with a maximum frequency of occurrence of 17.6 and 10.3% respectively.

Rhonciscus stridens

Total length ranged from $6-16 \mathrm{~cm}$, and the mean length was 12.27 cm (Fig. 34).

Fig. 34. Length frequency distribution of Rhonciscus stridens.

Females and males were at maturity stages 2,3 and. 4. However, the majority of females (71.8\%) were at stage 3, while males (75.9\%) were at stage 2 (Table 17).

Table 17. Relative frequencies (\%) of maturity stages of Rhonciscus stridens by subarea.

Maturity	Females						Males						
Subareas	2	2-3	3	3-4	4	n	2	2-3	3	3-4	4	n	Juv
Angoche $\boldsymbol{+ M o e b a s e}$ $\text { (\% in } \mathrm{n}^{\mathrm{o}} \text {) }$	28.2	25.6	46.2			39	75.9	6.9	10.4	3.4	3.4	29	1.4

Upeneus vittatus

Total length varies from $7.5-19.0 \mathrm{~cm}$ ($\overline{\mathrm{LT}}=12.66$) with most individuals (70.76%) being between $11.5-13.0 \mathrm{~cm}$. It seems that the mean length decreases from north to south.

The length-weight relationship was studied for males and females (Fig. 36). The equations follows:

Females: $\mathrm{n}=192$

$$
r=0.9446
$$

$$
\log W=-1.888943+3.041261 \log L
$$

Males: $\quad \mathrm{n}=178$
$r=0.9490$

$$
\log W=-2.177613+3.299889 \log L
$$

In Angoche-Moebase, Quelimane II and Machese-Beira the majority of females were at maturity stages 3 and 4 , while males were at stage 2 (Table 18).

In Quelimane I males and females were at spawning. Gonadosomatic index was estimated for females and males.

$$
\begin{aligned}
\text { Fernales: } \mathrm{n} & =78 \\
\overline{\mathrm{GSI}} & =0.49 \\
\text { Males: } \mathrm{n} & =27 \\
\overline{\text { GSI }} & =0.20
\end{aligned}
$$

The main components of the stomach contents were shrimps and fish with the frequency of occurrence of 63.5% (Quelimane II) and 28.4% (Quelimane I) respectively. Other components which occurred were crabs, squids in reduced percentage.

Fig. 35. Length frequency distribution of U. vittatus.

Fig. 36. Length-weight relationship of U. vittatus.

Table 18. Relative frequencies (\%) of maturity stages of U. vittatus by subarea.

$\underbrace{\text { Maturity }}_{\text {Subarea }} \underbrace{\text { Mand }}_{\text {Stages }}$	Females									Males							
	Juv	2	2-3	3	3-4	4	4-5	5	n	2	2-3	3	3-4	4	4-5	5	n
Angoche (\% in n°)		31.5	1.1	57.3	2.2	7.9			89	66.7	10.5	22.8					57
Moebase (\% in n^{O})	1.1	21.0	7.4	37.1	11.1	22.2		1.2	81	43.4	5.7	31.2	8.5	9.4	0.9	0.9	106
Quelimane II (\% in n^{0})		17.9	6.0	25.4	28.3	20.9	1.5	-	67	66.7	11.1	11.1	-	11.1	-	-	9
Quelimane I (\% in n°)		16.7	27.8	25.9	0.9	22.2		6.5	108	24.1	14.5	32.5	10.9	9.6	-	8.4	83
Machese + Beira (\% in rio)	0.3	39.1	12.0	41.2	-	7.7			233	54.2	8.5	21.1	0.7	14.8	-	0.7	142
Total	0.3	28.7	11.9	38.4	5.4	14.0	0.2	1.4	578	47.1	9.3	26.2	4.8	10.1	0.2	2.3	397

Total length varies from $9.0-16.5 \mathrm{~cm}$ and there is no significant variation in mean length for the various subareas (Fig. 37) 。

Saurida undosquamis

Total length range from $15-30 \mathrm{~cm}$, the mean length being 22.29 cm , (Annex 4).

Polynemidae

Fig. 37. Length frequency distribution of U. bensasi.

8. SHALLOW-WATER SHRIMP

Objectives and methods

The objective of the present survey was to study the shrimp distribution and to estimate an index of abundance in order to compare with previous estimates.

The methodology applied was the same as during the last survey (BRINCA et al., 1982).

Design of the survey

The design of the present survey was basically the same as the one in the above mentioned report. However, as it was recommended in that report, the main strata were subdivided into smaller strata, keeping the previous boundaries unchanged. Eighteen strata were defined (see Annex 5, table 18).

The stations were allocated using a proportional scheme. Optimum allocation was not used because there is still some doubts concerning the variance of the catches in each stratum. Figs. 38 and 39 shows the strata and the station pattern obtained.

The first four trawl hauls (three from stratum 1 and one from stratum 2) could not be considered because of technical problems with the net. These problems were not solved until station no. 499.

Due to the lack of time, strata 5.2.a, 5.2.b and 7 were not covered.

Indices of abundance

The tables from 19 to 23 and tables from 27 to 29 , included in Annex 5, show the individual catch per tow in each stratum, the mean catch per tow, the biomass and the stock size estimates per stratum. The total catch of shrimp and the catch of the main

Fig. 38. The stratification scheme for shallow-water shrimp survey.
species, Penaeus indicus and Metapenaeus monoceros was considered.

The problem of constructing valid confidence limits of the mean catch per tow, was not clearly defined in the previous report (BRINCA et al., 1982). Due to this fact, variance per stratum was not calculated in the present report and the stock size was estimated using only the arithmetic mean.

Fig. 39. Station pattern for the shallow-water shrimp survey.

For the computation of the swept area by tow the following values were used:
mean trawling speed - 2.8 knots
horisontal opening of the net - 18 meters

For total shrimp biomass a stratified mean per tow of 5.34 kg was estimated and a mean biomass of 2,077 tons. For the species P. indicus a stratified mean catch per tow of 1.398 gr and 37 individuals was obtained. The biomass was estimated to 544 tons and the stock size as 14×10^{6} individuals. For the species
M. monoceros a stratified mean catch per tow of 764 gr and 61 individuals was obtained. The biomass was estimated to 297 tons and the stock size as 23×10^{6} individuals.

Biological characteristics of the main species

Measurements of carapace length were grouped in 2 mm classes. At each station the length composition obtained in the sample was weighted by the total catch of the species, expressed in numbers. Within each stratum the length composition was combined and weighted by the stock size of the stratum.

By combining the length composition of the different strata the overall length composition for the total area covered was obtained. The above mentioned methodology was applied considering the different stages of maturity of females. (The gonad maturity stage just after spawning is referred to as ld.)

The total length - total weight relationship was obtained for P. indicus and M. monoceros (females and males separately) applying the functional linear regression to data transformed in logarithms. Due to the scarcity of data these relationship were not calculated per stratum.

Penaeus indicus
a) Females

Carapace length varied between 16 and 52 mm , with most of the individuals (73\%) being between 32 and 48 mm (Fig. 40).

Annex 5, table 24 shows that the smallest size occurred in strata 4.l.b and 5.1.a. Annex 5, table 25 shows the percentage of the gonad maturity stages per stratum. For the total area covered, late maturing and mature females constitute 37% of the female population. The highest percentage were found in strata 5.1.c and 6.a.

Fig. 40. $\frac{\text { Penaeus }}{\text { Carapace }} \frac{\text { indicus }}{\text { length }}$ bution.

Fig. 41 shows the length-weight relationship, expressed by the following equation:

$$
\begin{aligned}
\log W & =3.5464 \log \mathrm{LT}-6.3237 \\
\mathrm{n} & =141 \\
r & =0.9779
\end{aligned}
$$

Fig. 41. Penaeus indicus - Length-weight relationship.

b) Males

Carapace length varied between 16 and 42 mm with most of the individuals (79\%) being between 30 and 36 mm (Fig. 40). The smallest size occurred in strata 4.1.a, 4.1.b and 5.1.a (see Annex 5, table 26). Fig. 41 shows the length-weight relationship, expressed by the following equation:

$$
\begin{aligned}
\log W & =3.2181 \log L T-5.6205 \\
\mathrm{n} & =200 \\
\mathbf{r} & =0.9459
\end{aligned}
$$

c) Sex - ratio

Sex - ratio was computed and males were dominant (60 to 80\%) except in strata 3.1.a and 6.a.

Metapenaeus monoceros
a) Females

Carapace length varied between 12 and 52 mm with most of the individuals (68\%) being between 22 and 34 mm (Fig. 42). Annex 5, table 30 shows that the smallest individuals were found in strata 3.1.a, 4.1.a, 4.1.b and 5.1.a.

Fig. 42. Metapenaeus monoceros. Carapace

Annex 5, table 31 shows the percentage of the different maturity stages per stratum. In general, females seem to be at the early maturity stages, except in the stratum 3.2.b, where the percentage of the late maturing and mature females was higher. For the total area covered, only 4.7% of the female population was formed by late maturing and mature females.

Fig. 43 shows the length-weight relationship, expressed by the following equation:

$$
\begin{aligned}
\log W & =3.1441 \log L T-5.4521 \\
n & =423 \\
r & =0.9853
\end{aligned}
$$

Fig. 43. Metapenaeus monoceros. Length-weight relationship.
b) Males

Carapace length varied between 12 and 44 mm , with most of the individuals (84%) being between 20 and 30 mm (Fig. 42). The smallest size occurred in strata 2, 3.1.a, 4.1.a and 5.1.a (see Annex 5, table 32).

Fig. 43 shows the length-weight relationship, expressed by the following equation:

$$
\begin{aligned}
\log W & =3.0285 \log L T=5.2449 \\
n & =441 \\
r & =0.9810
\end{aligned}
$$

c) Sex - ratio

Sex - ratio was calculated and the proportion between males and females was 1:1.

Conclusions and recommendations for future surveys related to the survey design.

1. The stratification scheme applied in this survey seems to be better than the one used during the previous survey (BRINCA et al., 1982). This is particularly evident in stratum 4.1, which was subdivided into two new strata and these showed a significant difference in catch per tow.
2. The subdivision of stratum 5 had also given better results. However, it seems that a new geographic subdivision of stratum 5.1.a into two new strata may improve the results.

Therefore, it is recommended that during future surveys, a new boundary at $19^{\circ} 05^{\prime}$ s should be considered for stratum 5.l.a.
9. REFERENCES

AVERIN, B., TIMOCHIN, I., SOUSA, B., SOUSA, I. A survey on the fish resources at Sofala Bank Mozambique, SeptemberDecember 1982. Instituto de Investigação Pesqueira, Maputo, azcher NIRO, Kerch (unpublished).

BRINCA, L., JORGE DA SILVA, A., SOUSA, L., SOUSA, M.I. and SETRE, R. (1983). A survey on the fish resources at Sofala Bank - Mozambique, September 1982. Reports on surveys with the R / V "Dr. Fridtjof Nansen". Instituto de Investigag̃ão Pesqueira, Maputo. Institute of Marine Research, Bergen. 85 pp .

BRINCA, L., REY, F., SILVA, C. and SETRE, R. (1981). A survey on the Marine fish Resources of Mozambique - Oct.-Nov. 1980. Reports on surveys with the R/V "Dr. Fridtjof Nansen". Instituto de Desenvolvimento Pesqueiro, Maputo, Institute of Marine Research, Bergen.

BRINCA, L., SILVA, C. e SILVA, A. (1981). Relatório do cruzeiro realizado no Banco de Sofala pelo arrastão "Muleve" em Julho-Agosto 1979. Informação no. 4, Instituto de Desenvolvimento Pesqueiro, Maputo. (unpublished).

SETRE, R. and SILVA, R. de P. (1979). The Marine Fish resources of Mozambique. Reports on Surveys with the R/V "Dr. Fridtjof Nansen", Serviço de Investigação Pesqueira. Maputo. Institute of Marine Research, Bergen.

SOUSA, M.I. (1983). Relatório do cruzeiro realizado no Banco de Sofala pelo navio "Pantikapey" de 7 a 23 de Junho de 1981 - Peixes pelágicos e Fauna Acompanhante de Carapau e Cavala. Revista de Investigagão Pesqueira, no. 4. Instituto de Investigação Pesqueira, Maputo. 33.66 .

SOUSA, M.I. (1983). Relatório do cruzeiro realizado no Banco de Sofala pelo navio "Pantikapey" de 21 de Julho a 7 de Agosto de 1981 - Peixes Pelágicos e Fauna Acompanhante de Carapau e Cavala. Revista de Investigação Pesqueira, no. 4. Instituto de Investigação Pesqueira, Maputo. p. 67.97.

TIEW, K., RONQUILLO, I.A. and SANTOS, L.M. On the Biology of Anchovies (Stolephorus, Lecepede) in Philippine waters. Indo-Pacific Fisheries Council - 13th session: (20-33).

ANNEX 1
ANNEX 1

time sth gear DATE GTART NO. TYPE		$\frac{\text { Peoseizon }}{\text { MoRTH }} \text { EAST }$		(19)	Doninant species		${ }^{6}$
$03.05 \quad 153515058$	$15 \quad 15$	$1717{ }^{1738} 23{ }^{\prime}$,0	, 0	\% 0 Catch	,00	, 0
31.050540 506 日T	1111	$1718{ }^{18} 03816^{\prime}$	68,4	136,8	Secutor insidiator	54,00	39.4
					Pellona ditchela	18,40	13,4
					Trrvss vitricostris	14.2	10,3
					Scaberourus conersoni	12,20	8,9
31.05013550787	$27 \quad 27$	$1728{ }^{\prime} 03815{ }^{\prime}$	12,0	24,0	Scoaberomerus comersoni	9,4	39,3
					selatinde	8,16	3,0
					Lolites so	3,2	13,3
					Scosberoides tol	,90	3,7
31.35 2945 508 BT	$13 \quad 13$	$1729{ }^{1937} 58$	102.5	205.0	Pellons ditmela	118,2	57.6
					Secuter insidiator	48,00	
					Carangoides mal bari cus	19,2	9,3
					Upereses vittatus	9,00	4,3
31.0511005098 tr	8	1728, 0375	230,4	921,6	Pellors ditchela	546,0	59,2
					Thryssa vitrirostris	238,0	
					Polinemus sextarius	75,6	8,2
					Secuter insidiator	22,4	2,4
31.05 1315510 eq	88	$17^{3} 30374{ }^{\prime}$	55, 6	111,2	Peli iona ditchela	${ }^{26,88}$	24,1
					Johnius dussusieri	23, 6	21,2
					Polvneaus sextarius Cyncglossus lingua	$\underset{\substack{20,8 \\ b, 80}}{ }$	$\underset{\substack{18,7 \\ 6,1}}{ }$
31.35153051185	3737	$1745^{\prime} 0375$	56, 7	113,4	Epinepbelus sp	31,00	
					Scomerchorus comersoni	22,60	23,4
					Lut janus sebas	11,6	10,2
					Carangoides malabari cus	11,4,	10,0
31.051945512 PT	3110	1734035803	76,7	153,4	Dussumieria acuta	57,4	37,4
					Sirdinella sp.	42,0	27,3
					Stolechorus punctifer Stolephorus indicus	15,80 15,00	$\stackrel{10,2}{9,7}$
01.06 0559 513 日T	1010	173903731	72,5	145,0	Cariof	3b,2	24,9
					Jotinius bel angerii	25,0	17,2
					Otalithes ruber	18,00 11,2	$\xrightarrow{12,4}$
01.06 07725148	$15 \quad 15$	$1744^{\prime} 03727^{\prime}$	156,7	313,4	Dtoli thes ruber	79,2	25,2
					Fortio niger	${ }^{31,0}$	19,4
					Trichiurus lepturus Ponadasys hasta	${ }_{23,}^{28,0}$	8,9 7,4

	TIME STM GEAR EEPTH（m）				P9SITIOM．	Catch（kg）		doninamt species	HEIGTH（KG）		TIME STN GEAR DEPTH（W）PGSIILOH C CATCH（XG）								dominant species	［EIGTH．（K6）	
amte	Staft	No．TYPE	Hian	GERR	KORTH EASI	OTAL Pr			PR HR	，			No．TYPE	tom		koith Est	total Ph	\％${ }^{\text {R }}$		PF HR	1
04.06	1420	535 bT	10	10	86 57＇036 14＇	314，0	628，0	Thrys5a vitrirastris	216，00	34， 3	06.06	2135	545 PT	65	15	194903617%	6，2	12，4	Stolephorus punctifer		
								Trichiurus lepturus	100，80	16，0									Decapterus russelli	， 40	3，2
								Pellona ditchela	93， 60	14，9									Loliga sp	， 36	2，9
								Sardinella sp．	43，20	6，8									Rasteellieer sp．		1，4
05.06	0815	536 BT	19	19	1905 036 03＇	120，9	241，8	Pellona ditchela	94，72	39，1	07.06	0820	546 BT		11	1943 ＇035 14＇	554，1	1108，2	Sardinella albella	239，40	21，6
								Thryssa vitrirostris	44，02	18，2									Pellona ditehela	235，60	21，2
								Serutor insidiator	25，34	10，4									Thryssa vitrirostris	108， 30	9，7
								Upeneus vittatus	18，00	7，4									Sardinella sp．	95，00	8，5
05．06	1035	537 вT	11	11	$1905{ }^{\prime} 0357^{\prime}$	169，8	339，6	Pellona ditchela	192，00	56，5	07.06	1010	547 Bt	18	18	1951×03518 ，	49，5	99,0	Atule nate	53，70	
								Thry 55 a vitrirostris	55.20	16，2									Sconerosorus canersoni	19，40．	19，5
								Trichiurus lepturus	28,80	8，4									Carangoides nalabari cus	9，00	9,0
								Secutor insidiator											Scanbercoorus linealatus	7，40	7，4
05.06	1210	538 Bt	13	13	$1911^{\prime} 0354{ }^{\prime}$	57，6	115，2	Pallona ditchela	60，00	52，0	07.06	1300	548 日T	11	11	1956 ＇ 03458	205，8	411，6	Secutor insidiator	165，20	40，1
								Trichiurius lepturus	16,00	13，8									Leiognathus equulus	57，40	13，9
								Secutar insididar	9,00	1，8									Posadasys naculatus	54，88	13，3
								Thryssa vitrirostris	5，00	4，3									Upeneus vittatus	39，20	$\stackrel{9}{9,5}$
05．06	2340	539 pt	13	10	$1923 \times 03652^{\prime}$	15，4	30，8	Stolepharus punctifer	30，00	97，4	97.06	1510	549 日T	10	10	$2003{ }^{\prime} 03459$	20，9	41，8		27，80	
								Loiiqg sp	， 44	1，4						－${ }^{\text {aj }}$－at			Scoaberonorus canaersoni	11，50	27，5
								Rastreiliger kanaqurta	， 32	1；0									Loligo sp		
06．06	0510	540 PT	25	10	1912×3607	61,7	185，1	Stolephorus punctifer	180，00	97，2	08.06	0835	550 日t	9	5	$2011{ }^{\prime} 03453$	34，0	68，0	Sconberoborus lineolatus	44，00	
								Rastrelliger kanagurta	2，70	1，4						20.10			Carangoides 5p	7，20	10，5
								Loligo sp	2，10	1，1									Scasberonorus contersoni	4，80	7，0
																			Scamberoides tol	2，70	3，9
06．06	0735	541 вT	21	21	1916＇ 03552^{\prime}	43，9	87，8	Carangoides nalabaricus	17，10	19，4											
								Dussunieria acuta	14，70	16，7	08.06	0955	551 BT	6	6	$2016{ }^{\prime} 03455^{\prime}$	2132，7	4265，4	Sphyraena obtusata		
								Saurida undosquanis	13,20	15，0						2 l － 31			Pellona ditchela	1271，00	29，7
								Therapon jarbua	12，00	13，6									Thry 55 a vitrirastris	352，00	8，2
								Upeneus vittatus	9，00	10，2									Poudasys aaculatus	164，00	3,8
06.06	0855	542 вT	17	17	$1918{ }^{\prime} 0357^{\prime \prime}$	70，2	140，4	Pellona ditchela	99，74	71，0	08．06	1225	S52 BT	16	16	2021 ＇ 034 56＇	8，5	17，0	Scaneronorus comersoni		
								Sconbersarus comersons	11，00	1，8									Scanberonorus lineoiatus	5，00	29，4
								Upeneus vittatus	5，86	4，1									Carangoides nal abaricus	3，40	20，0
								Saurida undosquanis	4，58	3，2									Atule sate	，50	2，9
06.06	1050	54385	22	22	${ }^{19} 26^{\prime} 0354{ }^{\prime}$	86，8	173，6	Upeneus vittatus	64，96	37，4											
								Dussunieria acuta	24，00	13，8											
								Scomberonorus comersoni	22，20	12，7											
								Caridea	20，40	11，7											
								Carangoides talabaricus	18，00	10，3											
06.06	1340	544 в	12	12	$1932 \times 353^{\prime}$	168，7	337.4	Trichiurus leaturus	74，40	22，0											
								Arius dussumierii	39.60	11，7											
								Otolithes ruber	32，40	9，6											
								Johnius dussumeri	31.20	9,2											

	time stn gear depth (m)				Positicer	Catch (kg)		dommant splites	WEEETH KKG		DATE	TIME STN GEAR DEPPH (H)				PDSITION	Catch (180)		dQninant species	WEIETH (16)	
		N.	+	Lenh						1		Start	No. TYPE	-		marth east	Wial PR			PR HR	2
01.06	0930	515 BT	24	24	$1751^{\prime} 03732$	13,1	26,2	Sconberonorus conaersoni	4,00	15,2	03.06	0800	525 BT	19	19	$1817{ }^{\prime} 03655^{\prime}$	79,0	158,0	Pellona ditchela		34,3
								Loliga sp	3,70	14,1									Thry55a vitrirostris	46,32	29,3
								Saurida tunbi]											Stolephorus punctifer	31,20	19,7
								Caranx sexfasciatus	3, 10										Trichiurus lepturus	11,40	T,2
01.06	1100	516 gT	20	20	$1750 \times 3734^{\prime}$	10.4	20,8	Sconteronorus lineolatus	9,00	43,2	03.06	0720	5268 t	24	24	1818×05701	29,0	58,0	Mobula di itolus	41,40	71,3
								Scoaberonorus casmersoni	6,30	30,2									Scomberonorus conersoni	10,00	17,2
																			Al epes djeddaba	4,40	7,5
								${ }_{\text {Decapterus macrasama }}$	1,10	5,2 5,									Decapterus russelli	1,64	2,8
02.06	0010	517 PT	24	24	$1807{ }^{\prime} 0371{ }^{\prime}$	41,8	83,6	Stolephorus punctiter	40,80	48,8	03.06	1115	527 BT	23	23	$1827{ }^{\prime} 03752$	62,9	125,8	Upeneus vittatus	55,00	43,7
								Pellona ditchela	26,40	31,5									Carangoides nalabaricus	31,50 1650	25,0
								Sphyriena obtusata	8,40 1	10,0									Megaidspis cordyla	16,50	13, 1
								Rastrelliger kanaqurta	2,40	2,8									Secutor insidiator	4,56	3,6
02.06											03.06	1405	528 日T	31	31	$187^{\prime} 03652^{\prime}$	28,2	56,4	Lut janus sanguineus	20,80	36,8
	0605	518 Bt	8	8	180203704^{\prime}	82,0	164,0	Pellona ditchela	33,00	20,1									Lethrinus miniatus	14,60	25,8
								Trichiurus lepturus	21,90	13,3									Argyrops filanentosus	10,60	18,7
								CARIDEA	21,30	$12,9$									Upeneus bensasi	3,60	6,3
								Thry ${ }^{\text {sa }}$ vitrirostris	$13,20$										Upenes bensest		,
02.06											03.06	2005	529 PT	36	10	$1901^{\prime} 03648^{\prime}$	275,1	550,2	Pellona ditchela	395,76	71,9
	0740	519 BT	12	12	1806 ' 037 03'	117,3	234,6	Pellona ditehela		20,4									Stol ephorus punctifer	127,52	23,1
								Thryssa vitrirostris	47.50	20,2									Saruinella sira	9,24	1,6
								Tri ichiurus lepturus	46,00	19,6									Fornio niger	7,40	1,3
								otalithes ruber	14,00	5,9									Forso nier		
02.06											03.06	2135	530 ff	34	20	$18599^{\prime} 03642^{\prime}$	262,3	524,6	Stolephorvs punctifer	189,00	93,0
	0955	520 BT	26	26	$1803^{\prime} 0313$	837,0	1674,0												Thry 55 a vitrirostris	11,20	2,1
								Thryssa vitrirostris	208,00	12,4									Atule sate	8,00	1,5
								Upeneus vittatus Secutor insididtor	84,00 68,00	5,0 4,0						-			Sphyrsena obtusata	5,60	1,0
								Secutor insididator	68,00	4,0											
02.06	1110	521 日T	30	30	1801×03715			NOCATCH	.00	,	04.06	0555	531 bT	17	17	$1835{ }^{\circ} 0360^{\prime}$	137,7	275,4	Thryssa vitrirostris	71,60	25,9
	110							no catga											Pellona ditchela Trichiurus Iepturus	65,50	23,7
																			Trichiurus lepturus CARIDEA	46,00 16,56	${ }_{\text {16, }}^{16} \mathbf{7}$
02.06	1600	522 gT	25	25	$1810 \times 10^{\prime}$	4,5	9,0	Atule sate	3,40	37,7											
								Carangoides nalabaricus	1,80	20,0											
								Carangoides fulivitatus	1,34	14,8	04.08	0720	532 BI	12	12	$18^{34^{\prime} 03638}$	224,5	449,0	Johnius bel angerii	108,80	24,2
								Loifgo 5p	1,00	11,1									CARIDEA	83.20	18,5
																			Pellona ditchela	57,60	12,8
																			Otolit thes ruber	48,00	10,6
02.06	2520	523 PT	${ }^{28}$	8	18 34'036 55'	265,4	530,8	Stalephorus punctifer	480,00	90,4											
								Decapterus russelli	30,40	5,7											
											04.06	0910	533 BT	7	7	193903631^{\prime}	148,4	296,8	Johnius bel angerii	57,40	19,3
																			Trichiurus depturys	40,40	13,6
03.06	0600	524 BT	8	8	1823 036 43'	189,0	378,0	Sardinella sp.	71,40	18,8									Caridea	56,00	19,8
								Pellona ditchela	70,00	18,5									Pellona ditchela	36,40	12,2
								Foraio niger	46,00	12,1											
								Megal aspis cordyla	45,50	12,0											
											04.06	1220	534 BT	19	19	$18^{5} 8^{\prime} 0364^{\prime}$	176,4	352,8	Pellona ditehela	221,20	62.6
																			Thry $55 a \mathrm{vitrirostris}$	53,20	15,0
																			Secutor insidiator	33,60	9,5
																			Trichiurus lepturus	14,00	3,9

- Total Length frequency distributions and maturity stages
Table 1. ANCHOVY - Totail lengit frequency distributions by stations

- Table 2. ANCHOVY - Maturity Stages

Stages	State	Description
Juvenile	Immature	Testes: Small transparent, colouriecs to grey Ovaries: Glassytransparent, compact wall and small volume. Egers not visible with the naked eye, but under the microscope they are glassy transparent, polygonal, curved to one another.
2	Mature virgin	Testes: Smail, transpacent reddish grey colour. Ovaries: Translucent, of reddish to reddish grey colour, walls compaot, volume solid and readily recognized. Under microscope the eggs axe polygonal.
3	Developing stage	Testes: Longer opaque, non-transparent, white in colour, wall compact,if pressed white milt runs out slowly. Ovaries: Opaque orange to reddish white, wall richly vasculaxized. Contents very compact, but loose spherical translucent eggs present.
4	Mature	Testes: Thealsiucent creamy white. Milts runs out with slight pressure. Walls loose and soft. Ovaries: Translucent, reddish, some orange in colour. Ovaries filled with loose eggs which run out with slight pressure. All eggs are glassy transparent.
5	Spent	Testes: Much shorter in length, dark grey to reddish grey with loose walls, and rich in blood vessels. No milts rums out when pressed. Ovaries: Transparent, dark red, walls very loose with numerous folds, very much shorter and bloody. Lots of solid materials, but only with few eggs, sometimes already quite similar to stage 2.

ANNEX 3

SMALL PELAGIC FISH

Size distribution of fish examined and Maturity stages of D. russellii and
R. kanagurta

Size distribution of smell pelawic Ëish examined

+	

TABLE 2 . Maturity stages of D. russellii and R. kanagurta

SPECIES	St. Nr.	FEMAIES							MALES						
		I	II	III	IV	V	VI	n	I	II	III	IV	V	VI	n
Decapterus musselliiRastrelliger kanagurta	504		1	4		3		8			5	3	1		9
	521		2			2		4		2	3	1			6
	523		1	11	15	7		44			4	10	2		16
	526			1		4	2	7				. 2	9		11
	547		7	10	2	3	1	23		2	1				3
	501		3				1	4							
	504		3			15		18		3			17	4	24
	509		3				2	5		2	1		1		4
	521		6					6		3					3
	523	10	4					14	28	8				.	36
	524		2	2	2	7	1	14				1	4		5
	531		2	1				3					2		2
	535			1				1		3	1		1		5
	536			2				2							

- Length frequency distribution and scale of maturity stages

DEMERSAL FISHES																												
Saurida undosquamis	Sub. Total	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	2930	N	\bar{L}	s^{2}
											1.	2	1	4	5	17	18	26	12	14	2	5	1	1	1	110	22.3	5.62
Polynemus sextarius	Angoche + Moebase	3	23	10	31	32	28	8	2	2	12	11	2	2	1											167	10.9	10.19
	Quelimane I + Beira			9	11	12	16	4	1	3	4	7	3													70	11.8	7.41
	Quelimane II	1	15	22	56	22	34	3	1																	154	9.8	1.81

Table 2. . DEMERSAL FISH . Scale of maturity stages

Stages	State	Description
Juvenile	Immature	The gonads are slender, transparent. The colour is yellow to rose. Generally, it is difficult to determine the sex of the specimen at naked eye.
2	Mature virgin	Ovaries transparent. Blood vessels can be seen in the ovary wall. Ova small and not visible to naked eye. Testis are translucent, slender and round. The colour is rose pale or grey.
3	Ripening	Development of ovaries. Ovocytes translucent, the colour of ovaries range from yellow to orange. Ovary wale with several blood vessels. Ovocytes visibles to naked eye and yellow to orange. Testis are rosemgrey and developped occupying about $\frac{1}{2}$ of ventral cavity. No milt produced under pressure, excepting in last phase of this stage where it is possible to see some spermatozoons.
4	Ripe	Ovaries round. Occupying $\frac{1}{3}$ of ventral cavity. The colour varies from species to species. In majority of cases are orange-red. Ovocytes translucent, which can be separate easily, and the size varies. Females in stage 4 to 5, presents the gonads with minimum weight and ovocytes transpaxent. End of spermatogenesis. Spermatic channels with mature spermatozoons, which are released with a notch.
5	Spent	Ovocytes transparent which are released by pressure of the abdomen. The rupture is synchronous. By pressing the abdomen, sperm is released. Testis are whitish and flabby. The size decrease, because of sperm release.
6	Recovering spent	Ovaries bloodshot, flabby and light. The oavity of ovary is big and contain remnants of disintegrating opaque and ripe ova, darkened or translucent which are adherent to the ovary wall.s. External sexual opening is big. Testis are slender and flabby. The oolour is rise pale to bloodshot.

Remark: In case of doubt or if the specimen is in a intermediate stage, the stages 2-3, 3-4 or 4-5 are used.

ANNEX 5

SHALLOW WATER SHRIMP

Design of the survey and worksheet
for the computation

Table 1. - Design of the survey

Strata definition
Based on strata definition of the last survey and on their recommendations (Brinca et all 1982) the 6 sub-areas had been subdivided in eighteen new strata.

Sub-area	Stratum	Geographic Limits	Depth boundaries
1	1	$16^{\circ} 20^{\prime}-16^{\circ} 47{ }^{\prime} 5$	5-20 m
2	2	$16^{\circ} 47 \cdot 5-17^{\circ} 15^{\prime}$	5-20m
3	$\begin{aligned} & 3.1 .2 \\ & 3.2 .2 \end{aligned}$	$17^{\circ} 15^{\prime}-17^{\circ} 40^{\prime}$	5-25m
	$\begin{aligned} & 3.1 . b \\ & 3.2 . b \end{aligned}$	$17^{\circ} 40^{\prime}-17^{\circ} 52 \prime 5$	25-45m
4	$\begin{aligned} & 4.1 . a \\ & 4.2 . a \end{aligned}$	$17^{\circ} 52.5-18^{\circ} 30^{\prime}$	5-25m
	$\begin{aligned} & 4.1 . b \\ & 4.2 . b \end{aligned}$	$18^{\circ} 30^{\prime}-18^{\circ} 50$	25-45m
5	$\begin{aligned} & 5.1 . a \\ & 5.1 .0 \\ & 5.2 . a \end{aligned}$	$18^{\circ} 50^{\prime}-19^{\circ} 15^{\prime}$	$\begin{array}{r} 5-20 \mathrm{~m} \\ 20-25 \mathrm{~m} \\ 25-45 \mathrm{~m} \end{array}$
	$\begin{aligned} & 5 \cdot 1 . b \\ & 5 \cdot 1 . \mathrm{d} \\ & 5 \cdot 2 . \mathrm{b} \end{aligned}$	$19^{\circ} 15^{\prime}-19^{\circ} 40^{\prime}$	$\begin{array}{r} 5-20 m \\ 20-25 m \\ 25-45 m \end{array}$
6	$\begin{aligned} & 6 . a \\ & 6 . b \end{aligned}$	$\begin{aligned} & 19^{\circ} 40^{\prime}-19^{\circ} 50^{\prime} \\ & 19^{\circ} 50^{\prime}-21^{\circ} 00^{\prime} \end{aligned}$	West of $35^{\circ} 40^{\prime}$

Table 2. - Worksheet for the computation of the mean catch per tow for the total catch of shrimp

	STRATUM ESTIMATES														
	2	3				4				5				6	
		3.1.a	3.1 .6	3.2.a	$3.2 . b$	4.1.a	4.1 .6	4.2.a	4.2.b	5.1.a	5.1.b	5.2.a	5.2.b	6.2	6.6
Individual catches/tow $\left(\mathrm{Kg}^{\prime}\right)$	$\begin{aligned} & 0 \\ & 5.215 \\ & 0.130 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 2.075 \\ & 0 \\ & 0.370 \\ & 0.125 \\ & 0.740 \\ & 3.145 \\ & 25.50 \end{aligned}$	$\begin{aligned} & 5.570 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.775 \end{aligned}$	$\begin{array}{r} 14.860 \\ 13.240 \\ 7.510 \\ 0.425 \\ 0.030 \end{array}$	$\begin{aligned} & 15.555 \\ & 47.830 \\ & 39.440 \end{aligned}$	$\begin{aligned} & 1.990 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 20.530 \\ 5.180 \\ 2.040 \end{array}$	$\begin{array}{r} 0,120 \\ 10,200 \end{array}$	$\begin{aligned} & 1.250 \\ & 0.420 \end{aligned}$	$\begin{array}{r} 0.300 \\ 10.940 \end{array}$	$\begin{array}{r} 35.995 \\ 0.170 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
№ Havis	4	7	2	2	2	5	3	2	2	3	2	2	2	2	4
$\overline{\mathrm{y}}_{\mathrm{h}}(\mathrm{kg})$	1.341	4.565	2.785	0.025	0,4125	7.213	34.308	0.995	σ	9.283	$5 \cdot 160$	0.835	$5 \cdot 620$	18.083	0

Table 3. - Worksheet for the computation of total shrimp biomass (in weight)
$\overline{\mathrm{y}}_{\text {st }}=5.34$

	STRATOM ESTTMATES															
	2	3				4				5				6		Total
		3.1.a	3.1.b	3.2.a	3.2.b	4.1.a	4.1.b	4.2.a	4.2.b	5.1.a	5.1.b	5.1.c	5.1.d	6.a	6.b	
$\overline{\mathrm{y}}_{\mathrm{h}}(\mathrm{Kg})$	1.341	4.565	2.785	0.025	0.4125	7.213	34,308	0.995	0	9:283	5.16	0.835	5.62	18.083	0	5.34
$A_{h}\left(K_{m}{ }^{2}\right)$	1454	1753	1049	1063	458	1612	1070	2576	1091	1180	1173	789	1060	518	1324	18170
$\bar{E}_{\mathrm{h}}(\mathrm{Ton})$	41.8	171.4	62.6	0.57	4,0	249.0	786.1	54.9	0	234:5	129.6	14.1	127.6	200.6	0	2077

Table 4. - Worksheet for the computation of P. indicus biomass (in weight)
a) Basic data

	STRATA														
	2	3				4				5				6	
		3.1.a	3.1.b	3.2.a	3.2.b	4.1.a	4.1.b	4.2.a	4.2.b	5.1.a	5.1.b	5.1.c	5.1.d	$6 . a$	$6 . \mathrm{b}$
Individual	0	0	0.950	0	0	2.550	1.950	$\begin{aligned} & 1.315 \\ & 0 \end{aligned}$	0	9.920	0	1.170	$\begin{aligned} & 0 \\ & 0.650 \end{aligned}$	$\begin{aligned} & 35.500 \\ & 0 \end{aligned}$	0
Catches/tow												0.270			0
(Kg)														0	
														0	

b) Results

	Stratum Estimates															
	2	3				4				5				6		Total
		3.1.a	3.1.b	3.2.a	3.2.b	4.1.a	4.1.b	4.2.2	4.2.b	5.1.a	5.1.b	5.1.c	5.1.d	6.2	6.b	
$\bar{y}_{h}\left(K_{5}\right)$	0.003	0.211	0.475	0	0	1.468	3.906	0.657	0	5.240	0	0.720	0.325	17.750	0	1.398
$A_{h}\left(\mathrm{Km}^{2}\right)$	1454	1753	1049	1063	458	1612	1070	2576	1091	1180	1173	789	1060	518	1324	18170
$\bar{B}_{n}(t o n)$	0.09	7.9	10.7	0	0	50.7	89.5	36.2	0	132.4	0	12.2	7.4	196.9	0	544

Table 5. - Worksheet for the computation of P. indicus stock size $f+O^{A}$
a) Basic data

b) Results

-	Stratum estimates															
	2	3				4				5				6		Total
		3.1.a	$3.1 . b$	3.2.a	3.2.b	4.1 .2	4.1.b	4.2.a	4.2.b	5.1.a	5.1.b	5.1.c	5.1.d	$6 . a$	6.6	
$\overline{y_{h}}(\mathrm{n}$ O $)$	0.5	10.1	15.5	0	0	55.6	149.0	0	0	137.3	0	21.0	8.5	392	0	37:1
$A_{h}\left(\mathrm{Km}^{2}\right)$	1454	1753	1049	1063	458	1612	1070	2576	1091	1180	1173	789	1060	518	1324	18170
$5 \times 10^{3}(\underline{1})$	15.6	380.6	348.2	0	0	1919.2	3413.9	0	0	3469.3	0	354.8	192.9	4348,1	0	$14442 \cdot 6$

Table 6. - Worksheet for the computation of p. indicus of stock size
a) Rasic data

b) Results

	Stratum estimates															
	2	3				4				5				6		Total
		3.1.a	3.1.b	3.2.a	3.2.b	4.1.a	4.1.b	4.2.a	4.2.b	5.1.a	5.1.b	5.1.c	5.1.d	6.2	6.b	
$\begin{aligned} & \bar{y}_{h}(n \underline{0} q) \\ & A_{h}\left(\mathrm{~km}^{2}\right) \end{aligned}$	0.5 -1454	6.7 1753	5 1049	0 1063	0 458	9.8 1612	24.0 1070	0 2576	0 1091	$\begin{aligned} & 43.7 \\ & 1180 \end{aligned}$	$\begin{gathered} 0 \\ 1173 \end{gathered}$	$\begin{gathered} 7 \\ 789 \end{gathered}$	3.5 1060	$\begin{aligned} & 236 \\ & 518 \end{aligned}$	$\begin{gathered} 0 \\ 1324 \end{gathered}$	$\begin{aligned} & 13.3 \\ & 18170 \end{aligned}$
$\mathrm{S} \times 10^{3}\left(\mathrm{n}\right.$ (${ }^{\text {a }}$)	15,5.	251.5	112.3	0	0	338.3	549.9	0	0	1104.2	0	118.2	79,4	2617.7	0	5187.2

Table 7. - P. indicus f - Estimates of stock size (in number) splitted by length group and by stratum
a) Length frequency distribution by stratum

Strata	Class mark																		Total number	\bar{x}	${ }^{s} \bar{x}$
	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49	51			
3.1.a					1	2	3	2	6	7	7	13	2	4					47	36.0	0.65
3.1.b								1	2	2	3	1		1					10	36.0	1.09
4.1.a				3	3	2	5	2	6	7	9	4	5	1	1			1	49	34.3	0.87
4.1.b	3	5	1	8	5	10	6	3	9	15		2		2	3				72	29.6	0.82
5.1.a	1.	2	7	11	15	8	8	18	14	11	1.1.	13	2	1	3	2	4		131	31.7	0.63
5.1.c						1		1		1	2	4	2	3					14	38.1	1.24
5.1.d											1	1	1	2	1	1			7	42.7	1.30
6.2									8	15		61	102	116	69	55	46		472	43.0	0.16

b) Data weighted by total $n \circ$ of each stratum

Strata	Class maxk																		Total number
	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49	51	
3.1.a					5.3	10.8	16.1	10.8	32.2	37.2	37.2	69.7	10.8	21.4					251.5
3.1.b								11.2	22.5	22.5	33.7	11.2		11.2					112.3
4.1.a				20.6	20.6	13.9	34.5	13.9	41.3	48.4	62.2	28.1	34.5	6.8	6.8			6.8	338.3
4.1.b	23.1	37.9	7.7	61.0	37.9	76.4	45.6	23.1	68.7	114.4		15.4		15.4	23.1				549.9
5.1.a	8.8	16.6	57.4	92.8	128.1	67.4	67.4	151.3	118.1	92.8	92.8	109.3	16.6	8.8	25.4	16.6	34.2		1104.2
5.1.c						8.4		8.4		8.4	16.9	33.8	16.9	25.4					118.3
5.1.d											11.4	11.4	11.4	22.6	11.4	11.4			79.4
6.a									44.5	83.8		337.7	565.4	641.3	382.2	306.3	256.5		2617.7
Total number	31.9	54.5	65.1	174.4	191.9	176.9	163.6	218.7	327.3	407.4	254.2	616.6	655.6	753.0	448.8	334.2	290.8	6.8	5171.6
\%	0.6	1.1	1.3	3.4	3.7	3.4	3.2	4.2	6.3	7.9	4.9	11.9	12.7	14.6	8.7	6.5	5.6	0.1	

Total number in the bottom line and in the last column do not coincide with the sums of the values for the original values were aivided by 10^{3} in order to allow a better reading of the table.

Table 8. - P. indicus f - Estimates of stock size (in number) splitted by maturity stages and by stratum
a) Percentages of maturity stages by stratum (calculated by weigthing each sample by the tatal number of each station and combining the results by stratum)

b) Data weigthed by total number of each stratum

Maturity Stages	3.1.a	$3.1 . b$	4.1.a	4.1 .3	5.1.a	5.1.c	5.1.d	6.3	Total number
1	65.6	67.4	183.3	433.9	699.0	8.4	11.4	599.5	2062.4
2	27.4	22.5	63.6	54.4	92.8			392.7	653.3
3	65.6		21.0		92.8	33.8	11.4	1104.7	1329.2
4	54.3		7.1	23.1	50.8	25.3		431.9	592.6
5	27.4		21.0		50.8	33.8	22.6	44.5	200.1
1 d	11.1	22.5	42.3	38.5	118.1	16.9	34.1	44.5	327.9
5×10^{3}	251.5	112.3	338.3	549.9	1104.2	118.3	79.4	2617.7	5171.6

Total number in the bottom line and in the last column do not coincide with the sums of the values for the original values were divided by 10^{3} in order to allow a better reading of the table.

Table 9. - P. indicus \hat{f} - Estimates of stock size (in number) splitted by length groups and by stratum a) Length frequency distribution by stratum

Strata	Class mark														Total number	\bar{x}	$s \bar{x}$
	17	19	21	23	25	27	29	31	33	35	37	39	41	43			
3.1.a					1	1	3	11	8						24	30.9:	0.42
3.1.b							1	8	10	1			1		21	30.6	0.52
4.1.a		1	5	4	3	7	13	67	96	26	5	2			229	31.8	0.20
4.1.b		1	9	5	10	12	19	110	143	56	2	8			375	31.8	0.17
5.1.a	2	4	4	16	29	22	21	54	71	42	14	2			281	30.3	0.26
5.1.c				1	1	1	1	3	12	8	1				28	32.4	0.60
5.1.d								1	5	3	1				10	33.8	0.53
$6 . a$								30	145	123	7		7		312	33.9	0.10

b) Data weighted by total number of each stratum

Strata	Class mark													Total number
	17	19	21	23	25	27	29	31	33	35	37	39	41	
3.1.a					5.4	5.4	16.1	59.1	43.0					129.1
3.1 .6							11.3	89.9	112.0	11.3			11.3	235.9
4.1 .2		6.3	34.8	20.6	2Q. 6	42.7	91.7	469.5	671.9	173.9	34.8	14.2		1580.9
4.1 .6		8.6	68.7	37.2	77.3	91.6	146.1	839.2	1091.2	426.7	14.3	63.0		2864.0
5.1.a	16.6	33.1	33.1	134.8	243.6	184.5	177.4	454.1	598.4	354.8	118.3	16.6		2365.1
5.1.c				8.5	8.5	8.5	8.5	24.8	101.5	67.6	8.5			236.5
5.1.d								11.3	56.7	34.0	11.3			113.5
6.3								166.1	806.4	681.8	38.1	-	38.1	1730.4
Total number	16.6	48.0	136.6	201.1	355.4	332.7	451.1	2114.1	3481.1	1750.2	225.3	93.8	49.4	9255.4
\%	0.2	0.5	1.5	2.2	3.8	3.6	4.9	22.8	37.6	18.9	2.4	1.0	0.5	

Total number in the bottom line and in the last column do not coincide with sums of the values for the original values were divided by 10^{3} in order to allow a better reading of the table.

Table 10. - Worksheet for the computation of M. monoceros biomass (in weight)
a) Basic data

	Strata														
	2	3				4				5				6	
\therefore		3.1 .2	3.1.b	3.2 .2	3.2.b	4.1.2	4.1.b	4.2.a	4.2.b	5.1.a	5.1.6	5.1 .0	5.1.d	6.2	6.6
Individual	0	2.060	0,470	0	0	0,190	5.900	0.630	0	6.900	0	0	0	0.480	0
Catches/tow	2.950	0	0	0.020	0.650	5.750	3.250	0	0	0.410	0	0.130	0.090	0	0
. $(\mathrm{Kg}$)	0.120	0.320				0.820	2,500			0.730					0
	0	0.125				0.275									0
		0.740				0									
		1.670													
		2,000													

.b) Results

	Stratum Estimates															
	2	3				4				5				6		Total
		3.1.a	$3.1 . \mathrm{b}$	3.2.a	3.2.b	4.1.2	4.1.b	4.2.a	4.2.b	5.1.a	5.1.b	5.1.c	5.1.d	$6 . a$	6.6	
$\overline{\mathrm{y}}_{\mathrm{h}}\left(\mathrm{K}_{g}\right)$	0.77	0,987	0.235	0.010	0.325	1.407	3.883	0.32	0	2.580	0	0.065	0.045	0.240	0	0.764
$A_{h}\left(K_{m}{ }^{2}\right)$	1454	1753	1049	1063	458	1612	1070	2576	1091	1180	1173	789	1060	518	1324	18170
$\bar{B}_{1}(t o n)$	24.0	37.1	$5 \cdot 3$	0.2	3.2	48.6	89.0	17.7	0	67.7	0	1.1	1.0	2.7	0	297.4

Table 11. - Worksheet for the computation of M. monoceros stock size $\quad \rho+\sigma$
a) Basic data

b) Results

	Stratum estimates															
	2	3				4				5				6		Tȯail
		$3.1 . \mathrm{a}$	3.1.b	3.2 .2	3.2.b	4.1.a	4.1.b	4.2.2	4.2.b	5.1.2	5.1 .6	5.1.c	5.1.d	6.2	$6 . \mathrm{b}$	
$\begin{aligned} & \bar{y}_{h}\left(n^{O}\right) \\ & A_{h}\left(\mathrm{Km}^{2}\right) \end{aligned}$	99.5 1454	$\begin{aligned} & 84.7 \\ & 1753 \end{aligned}$	$\begin{aligned} & 14 \\ & 1049 \end{aligned}$	1063	16 458	$\begin{aligned} & 120.8 \\ & 1612 \end{aligned}$	$\begin{aligned} & 422 \\ & 1070 \end{aligned}$	2576	0 1090	$\begin{aligned} & 116.3 \\ & 1180 \end{aligned}$	1173	$\begin{aligned} & 3.5 \\ & 789 \end{aligned}$	$\begin{gathered} 3 \\ 1060 \end{gathered}$	$\begin{aligned} & 12: 5 \\ & 518 \end{aligned}$	0 1324	$\begin{aligned} & 61 \cdot 2 \\ & 18170 \end{aligned}$
$5 \times 10^{3}\left(n^{\circ}\right)$	3097.9	3179.4	314.5	0	156.9	4169.8	9669.0	0	0	2939.4	0	59.1	68.1	138.7	0	23792-7

Table 12 - Worksheet for the computation of M. monoceros if stock size
a) Basic data

	Strata														
	2	3				4				5				6	
		3.1.a	3.1 .6	3.2.a	3.2.6	4.1.a	4.1.b	4.2.2	4.2.b	5.1.a	5.1.b	5.1.c	5.1.d	6.2	6.b
Individual	0	115	20	0	0	10	336	0	0	121	0	0	0	9	0
Catches/tow	187	0	0	0	19	324	232	0	0	21	0	2	1	0	0
(n - ${ }^{\text {O }}$	8	10				32	105		-	18					
	0	8				14				*					
		28				0									
		55													
		112													

b) Results

	Stratum estimates															
	2	3				4				5				6		Total
		3.1.a	3.1.b	3.2.a	3.2.b	4.1.a	4.1.b	4.2.a	4.2.b	5.1.a	5.1.b	5.1.c	5.1. ${ }^{\text {d }}$	$6 . a$	6.6	
$\bar{y}_{h}\left(n^{\circ}\right)$	48.8	46.9	10.0	0	9.5	76.0	224:3	0	0	$53 \cdot 3$	0	1.0	0.5	4.5	0	3286
$A_{h}\left(K_{m}^{2}\right)$	1454	1753	1049	1063	458	1612	1070	2576	1091	1180	1173	789	1060	518	1324.	18170
S $\times 10^{3}$	1519.3	1760.5	224.6	0	93.2	2623.4	5139.2	$\because 0$	0	1346.8	0	16.9	$11 \cdot 3$	49.9	0	12785.2

Table 13 - M. monoceros $ᄋ$ - Estimates of stock size (in number) splitted by lenght groups and by stratum a) Lenght frequency distribution by stratum

Strata	Class mark																				Total number	\bar{x}	s \bar{x}
	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49	51			
2		4	22	16	13	19	4	16	34	32	18	5	4	8							195	26.6	0.45
3.1.a	3	23	34	23	19	34.	43	26	32	30	29	8	9	7	3	4	1				328	25.6	0.38
3.1.b					1	1	2	4	2	4		3	2		1						20	30.2	1.16
3.2.b						2		1	2	3	2	1	4	2	2						19	33.3	1.26
4.1.a	2	1	8	5	22	45	69	56	51	25	20	24	13	28	5	5	1				380	28.4	0.31
4.1.b	9	10	28	35	29	90	62	- 42	95	137	54	45	19	10	2			2		4	673	27.6	0.24
5.1.a		10	10	1	11	17	11	27	4	33	21	9	1	3	1						159.	26.9	0.48
5.1.c								1								1					2	35.0	8.00
5.1.d													1								1	-	-
6.3							1		2	1				2	1		2				9	35.9	2.50

Strata	Class mark																			Total number
	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	47	49	
2		30.4	171.7	124.6	101.8	147.4	31.9	124.6	264.4	249.2	139.8	39.5	31.9	62.3						1519.3
3.1.a	15.9	123.2	183.1	123.2	102.1	183.1	230.6	139.1	172.5	163.7	154.9	42.3	47.5	37.0	15.8	21.1	5.3			1760.5
3.1.6					11.2	11.2	22.5	44.9	22.5	44.9		33.7	22.5		11.2					224.6
3.2.b						9.8		4.9	9.8	14.7	9.8	4.9	19.7	9.8	9.8					93.2
4.1.a	13.1	7.9	55.1	34.1	152.2	309.6	477.5	385.6	351.5	173.1	139.0	165.3	89.2	194.1	34.1	34.1	7.9			2623.4
4.1.b	66.8	77.1	215.9	267.2	221.0	688.7	472.8	318.6	724.6	1048.4	411.1	344.3	143.9	77.1	15.4			15.4	30.8	5139.2
5.1.a	8.1	84.8	84.8	9.4	91.6	142.8	91.6	227.6	33.7	277.4	176.4	75.4	9.4	25.6	8.1					1346.8
5.1.c								8.4								8.4				16.9
5.1.d													11.3							11.3
6.a							5.6		11.1	5.5				11.1	5.5		11.1			49.9
Total number $\times 10^{3}$	103.9	323.5	710.6	558.6	679.9	1492.5	1332.4	1253.9	1590.1	1977.1	1031.1	705.4	375.4	416.9	100.0	63.7	24.2	15.4	30.8	12785.2
\%	0.8	2.5	5.6	4.4	5.3	11.7	10.4	9.8	12.4	15.5	8.1	5.5	2.9	3.3	0.8	0.5	0.2	0.1	0.2	

[^1]reading of the table.
b) Data weighted by total number of each stratum

Table 14. M. monoceros f - Estimates of stock size (in number) splitted by maturity stages and by stratum
a) Percentages of maturity stages by stratum (calculated by weigthing each sample by the total number of each station and combining the results by stratum

b) Data weigthed by total number of each stratum

Total number in the bottom line and in the last column do not coincide with the sums of the values for the original values were divided by 10^{3} in ordex to allow a better reading of the table.

Table 15. - M. monoceros ${ }^{6}$ - Estimates of stock size (in number) splitted by lenght groups and by stratum
a) Lenght frequency distribution by stratum

Strata	Class mark																	Total number	\bar{x}	$5 \bar{x}$
	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45.			
2		16	4	8	35	30	75	35										203	23.2	0.24
3.1.a		26	27	21	28	38	55	35	20	7	5	2						264	23.0	0.29
3.1 .6							2	4	2									8	27.0	0.54
3.2.b						1	3	5	3	1								13	27.0	0.60
4.1.2		1	3	21	21	49	43	60.	17	7	1		1					224	24.6	0.22
4.1.6			10	31	45	65	152	146	91	10	9	26	4			4		593	26.0	0.17
5.1.a	1		6	7	8	20	53	45	32			3						175	25.4	0.25
5.1.c								3	1	1								5	28.2	0.80
5.1.d					1	1	1		2									5	25.4	1.60
6.2					1	1	2	3	6	2	1							16	27.8	0.77

b) Data weighted by total number of each stratum

Strata	Class mark																Total number
	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	
2		124.7	31.6	61.6	271.5	233.6	582.5	273.1									1578.5
3.1.2		140.5	144.7	113.5	149.0	204.3	295.1	188.7	106.4	38.3	27.0	11.4					1418.9
3.1.b							22.5	44.9	22.5								89.9
3.2.6						4.9	14.7	24.5	14.7	4.9							63.7
4.1.a		7.7	20.1	145.4	145.4	338.7	295.4	414.4	117.5	46.4	7.7		7.7				1546.4
4.1.b			77.0	235.5	344.3	498.3	1159.6	1114.3	697.6	77.0	63.4	199.3	31.7			31.7	4529.7
5.1.a	9.6		54.1	63.7	73.3	181.6	482.6	409.3	291.4			27.1					1592.6
5.1.c								25.3	8.4	8.4							42.2
5.1.d					11.3	11.3	11.3		22.7								56.7
6.a					5.6	5.6	11.0	16.6	33.3	11.1	5.6						88.7
Total number	9.6	272.9	327.6	619.7	1000.3	1478.3	2874.7	2511.2	1314.6	186.2	103.7	237.7	39.4			31.7	11007.6
\%	0.1	2.5	3.0	5.6	9.1	13.4	26.1	22.8	11.9	1.7	0.9	2.2	0.4			0.3	

Total number in the bottom line and in the last column do not coincide with the sums of the values for the original values were divided by 10^{3} in
order to allow a better reading of the table.

From GEOLOGICAL-GEOPHYSICAL ATLAS OF THE INDIAN OCEAN, Moscow 1975.

[^0]: * In commercial fish axe included the following families: Priacanthidae, Scorpaenidae, Apogonidae, Platycephalidae, Gobiidae, Luthianidae Ariidae and Lethrinidae.
 ** In non comercial fish are included the families: Menidae, Lagocephalidae, Fistulariidae, Balistidae and Lobotidae.

[^1]: Total number in the bottom line and in the last column do not coincide with the sums of the values for the original values were divided by 10^{3} in order to allow a bettex

