S 167

Reports on Surveys with the R/V Dr Fridtjof Nansen

NORAD/UNDP/FAO

PROGRAMME GL0/82/001

Fisheridizektoratet Biblioteket

Cruise Report "Dr. Fridtjof Nansen"

FISHERIES RESOURCES SURVEY PAKISTAN

5 - 16 September 1983

ODD NAKKEN

OCTOBER 1983

Institute of Marine Research, Bergen

INTRODUCTION

Sickeridirehtora**tet** Bibliote**htor**a

Under the UNDP/FAO Global Programme (GLO/82/001) the fishery research vessel "Dr. Fridtjof Nansen" is scheduled to carry out several surveys in the North Arabian Sea during 1983-84.

1

R/V "Dr. Fridtjof Nansen" is placed at the disposal of UNDP/FAO by NORAD (Norwegian Agency of International Development) and the Institute of Marine Research, Bergen, Norway is responsible for carrying out the research programme in cooperation with local scientists.

The first cruise in Pakistan waters under this project was carried out in September 1983. The vessel left Karachi on 5 September at 1700 hours and the cruise was terminated at Karachi on 16 September at 2000 hours.

Scientific staff

From the Institute of Marine Research, Bergen:

O. Nakken (cruise leader), G.H.P. de Bruin, S. Myklevoll, T. Solberg, K. Strømsnes, H. Abrahamsen, T. Mørk.

From Marine Fisheries Department, Karachi:

Mohammad Arshad, Mohammad Arif.

Objectives

To carry out an acoustic survey of Pakistan waters; mapping the distribution and measuring the abundance of pelagic, demersal and mesopelagic fish.

NARRATIVE

The investigations started at the Iranian border on 6 September and were finished off the Indus delta on 16 September. The area was covered with transects about 10-15 nautical miles apart, from the 15-20 m contour line out to 5-10 nautical miles off the slope of the continental shelf (Figure 1).

The distance sailed and the number of stations worked were as follows:

Sailing distance:	2000	nautical miles
Hydrographic stations:	17	
Pelagic trawl hauls:	13	
Bottom trawl hauls:	44	

Weather conditions were excellent. Instruments and gears functioned satisfactorily.

RESULTS

Hydrography

Figures 2-5 show the distribution of temperature, salinity, density and oxygen contents in the four hydrographic sections (Figure 1). In the upper 100 m there is a tendency that the isolines are at greater depths offshore than at the coast, indicating an anti-cyclonic movement of the offshore water masses. In all sections, water masses of low oxygen contents, 1-2 ml/l cover substantial parts of the continental shelf. Along the Makran coast the 2 ml/l isoline was observed at depths between 20 and 30 m, while off the Indus delta (Sind coast) waters of oxygen contents less than 2 ml/l were found at 15 m at the innermost station. The effect of the freshwater outflow from the River Indus was observed at the three innermost stations in Section IV (Figure 5). A similar salinity distribution, but much less pronounced, was found at the innermost station in Sonmiany Bay (Figure 4). The transition between the "Indus water" and the oceanic water was sharp and was easily determined from the colour contrasts at the surface; the Indus water being green-yellowish in colour while the oceanic water was deep blue. This transition could be seen at the innermost parts of all the transects off southern Sind.

Pelagic fish

Figure 6 shows the distribution of pelagic fish. The fish was distributed on the shelf areas, and no recordings of pelagic fish were made further offshore. In general the recordings Dense concentrations were observed at were very scattered. five localities, all with very limited extensions. At the Makran coast the predominant species was rainbow sardine (Dussumieria acuta). The fish occurred in scattering layers and small schools in daytime at depths between 20-40 m, just During nighttime it was observed both as off the bottom. scattering layers and small schools at the surface. It ranged in length from 18-20 cm. Catch rates of rainbow sardines up to 3.7 tonnes per hour were obtained in pelagic night hauls.

Other pelagic fish species were scarce in the Makran area, but scads (<u>Decapterus</u> spp.) and hardtail scad (<u>Megalaspis</u> <u>cordyla</u>) were caught in limited numbers at some few trawl stations.

Off Sind concentrations of pelagic fish were found in three localities (Figure 6). At the inner end of the Indus Swatch very dense recordings of anchovy (Stolephorus sp.) were obtained in mixture with juvenile rainbow sardine. The fish was distributed in large schools or scattering layers at depths between surface and 20 m over 30-40 m bottom depth, but the extension of the area was limited to 2-3 square nautical miles. Quantities of bottom fishes - rays, sharks, grunts and croakers - were feeding on these concentrations.

Scattering layers and small schools of rainbow sardine, ranging from 10-20 cm in length, were observed in two localities off Sind at bottom depths between 60 and 80 m. During the day the fish occurred in small schools close to the bottom, at night it dispersed into a scattering layer at 30-40 m depth. In the Sind area the maximum catch rate of pelagic fish was about 500 kg per hour in the pelagic trawl.

Bottom fish

The distribution of bottom fish is shown in Figure 7. Relatively dense patches were observed several places along the Makran coast while the recordings off Sind were more scattered. At the Makran coast the concentrations of bottom fishes were predominated by hairtails (<u>Trichiurus lepturus</u> and <u>Lepturacanthus savala</u>) which made up the bulk of the catches in the area. The hairtails were observed as weak scattering layers both at the bottom and in midwater over bottom depths ranging from 25-30 m to the edge of the shelf. Grunts (<u>Pomadasys</u> sp.) and croakers (<u>Epinephelus</u> spp.) were also frequently caught in the bottom trawl hauls but in significantly less quantities than hairtails. Catch rates up to 6 tonnes per hour trawling were experienced.

Off Sind, both the recordings and the catches of bottom fish were more variable than at the Makran coast. In most of the investigated area the abundance was found to be low, and dense patches of fish were found only at two localities, in southern Sonmiany Bay and at the inner end of the Indus Swatch. In Sonmiany Bay catfish was the predominant scatterer, while small-sized croakers and grunts together with hairtails and rays made up the bulk of the catches off the Indus delta. Catch rates up to 16 tonnes per hour were obtained in bottom trawl hauls. On the outer banks off Sind, catch rates were low and variable and the threadfin bream (<u>Nemipterus japonicus</u>) was a major constituent.

Mesopelagic fish

Recordings of mesopelagic fish (Figure 8) were made at and off the edge of the continental shelf in the entire area. The fish showed the usual daily migration pattern: small schools and scattering layers at depths of 150 m or more in daytime and a scattering layer in the upper 50 m during the night. The recordings were mainly scattered and the catch rates were low. Lantern fish (Myctophidae) was predominant in the mesopelagic fish layer.

Plankton

In most of the shelf areas planktonic scatterers contributed the major part of the total echo abundance (the integrated echo energy) (Figure 9). Jellyfish and krill (Euphausiids) were probably the main contributors. Planktonic scattering layers were observed in all depths both during day and night at densitites which to a great extent made it impossible to obtain reliable integration values of scattered fish. The planktonic layers showed no systematic differences in back scattering strength at the echo sounder frequencies 38 kHz and 120 kHz.

At the eastern Makran coast and in Sonmiany Bay the trawl hauls indicated that krill was a major constituent of the planktonic biomass, while different kinds of jellyfish were caught in quantities off Sind.

Surface observations

Figure 10 shows the surface observations which were made. Large whales were spotted off the eastern coast of Makran, probably feeding on the quantities of krill in that area. Dolphins were observed at the outer end of the transects off Sind.

Due to bioluminescence, surface schooling fish could easily be spotted also at nighttime. In the offshore part of the southernmost transect a strange occurrence of bioluminescence was observed. At a distance it looked like waves of light moving at the sea surface at a high speed, 10-20 times the speed of the vessel (10 knots). The phenomenon was obviously caused by bioluminescence originating from sources which were situated 1-3 m apart. All these sources within a 10-30 m wide belt were triggered on and off with a short time delay from one side to the belt to the other, thus giving the impression of "waves of light" propagating through the water. The pulsations were quite regular, 95-100 per minute, and observed over a distance The observation was made between 0100 of 3-4 nautical miles. and 0200 hours local time. The sea was almost calm with a

small swell of 1-1.5 m height from southwest. It seems unlikely that the regular periodic "behaviour" of the phenomenon could be caused by the observed sea state or other physical factors. More likely the bioluminescence itself enabled the organisms to adjust their flash frequency and phase in order to strengthen the light intensity. Plankton samples from a Juday net hauled in the surface layers were preserved for later analysis.

Pakistan, 5-16 September 1983.

240

25°

398

401

Fig. 2. Section I: Ras Jiwani - South, 6-7 September 1983. Temperature, salinity, density and oxygen contents.

Fig. 3. Section II: Astola Isl. - South, 9 September 1983. Temperature, salinity, density and oxygen contents.

Temperature, salinity, density and oxygen contents.

Fig. 5. Section IV: Indus River - SW, 14-15 September 1983.

Fig. 7. Demersal fish distribution. "Dr. Fridtjof Nansen"s fisheries resources survey, Pakistan, 5-16 September 1983.

Fig. °. Mesopelagic fish distribution. "Dr. Fridtjof Nansen"s fisheries resources survey,

Pakistan, 5-16 September 1983.

Fig. 9. Plankton distribution. "Dr. Fridtjof Nansen"s fisheries resources survey, Pakistan, 5-16 September 1983.

Fig. 10. Surface observations. "Dr. Fridtjof Nansen"s fisheries resources survey,

Pakistan, 5-16 September 1983.

DATE	TIME Start	STN No.	BEAR Type	<u>DEPTH</u> Bottom	(M) GEAR	LATI	15I) T.	<u>TION</u> LONGIT	;		PR hR	SOMINANT SPECIES	WEIGTH (PR HR	14 14
07.09	0540	4	BT	25	25	N25 ()1'	E061 3	8,	331,3	662,6	Lepturacanthus savala CARCHARHINIDAE Pomadasys hasta Arius sp	92,40	13,9 13,0
07.09	0830	2	EC.	47	47	N24 :	59'	E052 0	17	68,9	137,8	Lepturacanthus savala Sepia pharaonis Rhizoprionodon acutus Epinephelus undulosus	36,60 22,60	25,3 16,4
07.09	1150		BT	80	80	N24 :	56'	E062 0	6'	ţţ ¹ 2	89,0	Otolithoides biauritus Lepturacanthus savala Arius sp SEPIIDAE JELLYFISH		12,1 B,(6,7
67.09	1335	4 <u>4</u>	BT	19	6	N25 (02'	E062 1	17	153,9	307,8	Pomadasys hasta Rhinoptera sp. Lutjanus argentimaculatus Acanthopagrus sp.	42,80	13,9 9,9
07.09	1015	5	87	37	37	N24 1	59'	E062 1				Pomadasys hasta Lepturacanthus savala Gymnura sp. Rhizoprionodon acutus	94,40 23,20	32,8 8,0
07.09	1820	<u>i</u>		28	28	N25 ()3.,	E062 2	5 J	34,0	68,0	Arius sp Rhinoptera sp. Lepturacanthus savala SHRIMPS	25,00 20,00 14,20 4,40	29,4 20,8
07.09	2125	7	E.	40	10	N25 ()4'	E062 3	<i>\</i> 0'	966,6	1933,2	Bussumieria acuta	1800,00 50,00 31,40	4,1
OB.09	0325	6		40	10	N24 5	5 9'	E062 4	.97	2174,0	4348,Ŭ	Dussumieria acuta Decapterus russelli	3720,00 560,00	
)B.09	0505	Ŷ	СŤ-	22	22	N25 ()3'	E062 5	31	1220,1	2440,2	Nibea albida MURAENESOXIDAE Symnura sp. Otolithes ruber	1560,00 180,00 141,20 100,70	7,3 5,7
09.09	0825	10	BT	38	38	N24 5	59°	E062 5	71	3156,1	6312,2	Lepturacanthus savala	6000,00	95,(

-

i i caj

DATE	TIME START	STN No.	GEAR Type	<u>DEPTH</u> Bottom	<u>(M)</u> Gear	F LA1	<u>051</u> IT.	<u>tion</u> Long:	ĪT.	<u>CATC</u> Total	<u>H (KG)</u> PR HR	DOMINANT SPECIES	WEIGTH PR HR	
08.09	1225	11	BT	15	15	N23	08'	E063	13'	76,1	152,2	Gymnura sp. Lepturacanthus savala Epinephelus diacanthus Arius sp	72,00 40,00 30,00 7,60	47,3 26,2 19,7 4,9
08.09	1705	12	BT	20	20	N25	03,	E063	25'	138,9	277,8	Lepturacanthus savala Arius sp Carangoides talamparoides Argyrops spinifer	83,80 12,50	30,1 4,4
08.09	1945	13	BŢ	34	34	N24	59'	E063	29'	1590,3	3180,6	JELLYFISH Lepturacanthus savala		
09.09	0405	14	PT	>500	30	N24	49'	E063	49'	420,0	840,0	NYCTOPHIDAE	840,00	100,0
09.09	0805	15	BT	68	68	N24	59'	E043	46'	617,8	1235,6	Pennahia sp. Lepturacanthus savala		
07.09	1005	16	PT	80	20	N24	58'	E063	40'	10,0	20,0	JELLYFISH	20,00	100,0
09.09	1225	17	BT	12	12	N25	15'	E093	457	594,5	1189,0	Arius sp Acanthopagrus sp. Lepturacanthus savala Gymnura sp.	238,00	20,0 16,1
09.09	1550	18	BT	12	12	N25	09'	E064	07'	46,6	73,2	MURAENESOXIDAE Lepturacanthus savala Gymnura sp. Arius sp	40,00 40,00 28,00 6,20	42,9
07.07	1855	17	F	25	25	N24	59'	E064	15'	525,7	1051,4	SCIAENIDAE Parapenaeopsis stylifera Epinephelus diacanthus Argyrops spinifer JELLYFISH	100,00 36,40 69,00 49,00 566,00	8,2 6,5 4,6
07.09	2105	20	P.T.	19	10	N25	01'	E064	20'	3333,6	6667,2	Lepturacanthus savala Krill Scomberoides commersonianus Megalaspis cordyla	6000,00 300,00 130,80 130,40	4,4 1,9
10.09	0315	71	BT	16	16	N25	06'	E064	42'	198,8	397,6	Arius sp MURAENESDXIDAE Otolithes ruber Gymnura sp.	170,00 80,00 72,00 50,00	20,1 18,1

DATE								<u>LONGIT.</u>		<u>:H (KG)</u> PR HR	DOMINANT SPECIES	<u>NEIGTH</u> PR HR	<u>(K</u> §
10.09	0620	22	BT	27	27	N25	<u>0</u> 8'	E064 54	' 290,2	580,4	Lepturacantnus savala Argyrops spinifer Pomadasys hasta Dasyatis sp	328,80 124,00 69,00 16,00	
10.09	1135	23	BT	17	17	N25	15'	E065 15	' 27,5	59,0	Gymnura sp. Otolithes ruber Rhinoptera sp. Pomadasys hasta Parapenaeopsis stylifera	17,40 10,80 6,80 6,80 6,40 6,00	
10.09	1455	24	BT	23	23	N25	09'	E065 24	104,7	209,4	Lepturacanthus savala Nibea albida Pomadasys hasta Krill	140,00 29,20 B,00 10,00	
10.09	1955	25	PT	200	70	N25	00'	E063 30	165,0	330,0	Lepturacanthus savala	330,00	1
10.09	2205	26	BT	33	33	N25	01*	E065 32	87,9	16,7	Trichiurus lepturus Arius sp Otolithes ruber Saurida tumbil	6,49 5,85 ,81 ,75	
11.09	0145	27		24	1 <u>.5</u>	N25	07'	E065 45	56,7	113,4	Arius sp Otolithes ruber Otolithes ruber Argyrops spinifer	41,40 33,20 15,00 B,20	
11.07	0645	28	BT	14	1	N25	17'	E065 59	165,0	330,0	Trichiurus lepturus Lactarius lactarius Pomadasys hasta Arius sp	224,80 73,60 12,40 6,30	
11.07	0855	29	BT	75	35	N25	12'	E065 58	4553,4	9106,8	Trichiurus leptarus	9000,00	
11.09	1015	20	BT	65	65	N25 (08'	E065 58'	2554,6	5109,2	Trichiurus lepturus	5000,00	
11.09	1410	31	BT	97	97	N25	03,	E065 58	673,0	1346,0	SCIAENIDAE Nemipterus japonicus	1300,00 46,00	
12.09	0440	32	BT	70	70	N24	57'	E066 19'	187,4	374,8	Nemipterus japonicus SCIAENIDAE Saurida tumbil Trichiurus lepturus	135,00 105,00 75,00 22,60	

DATE											<u>H (KG)</u> PR HR		<u>WEIGTH (</u> PR HR	
12.09	0740	33	BT	38	38	N24 0)4'	E066	31'	181,4	362,8	Trichiurus lepturus Lactarius lactarius Pomadasys hasta Gymnura sp.	271,20 52,80 20,40 4,40	14,5 5,6
12.09	0930	34	BT	31	31	N24 5	18'	E066 -	32'	1265,4	2530,B	Arius sp Pomadasys hasta Trichiurus lepturus Pomadasys opercularis	2000,00 202,80 50,00 38,00	8,0 1,9
12.09	1355	35	BT	73	73	N24 4	0'	E066	25°	71,9	143,8	Trichiurus lepturus Nemipterus japonicus Sphyraena obtusata Leiognathus sp	56,00 37,00 18,00 13,80	25,7 12,5
12.09	1950	34	PT	115	10	N24 1	7'	E065 :	58'	140,0	280,0	MYCTOPHIDAE Sphyraena obtusata Champsodon sp. Echeneis sp	242,00 25,60 7,20 4,40	9,1
12.09	2245	37	PT	74	55	N24 2	1'	E066	17'	1001,5	2003,0	Nemipterus japonicus JELLYFISH	400,00 1600,00	
13.09	0415	38	BT	22	22	N24 3	6'	E066	55'	181,8	363,6	Pomadasys hasta Argyrosomus hololepidotus Sciaenidae. unidentified Protonibea diacanthus	32,80	9,0 7,4
13.09	0715	39	BT	77	77	N24 2	17	E066	43'	110,1	220,2	Trichiurus lepturus	216,80	98,4
13.09	1015	40	BT	87	87	N24 0	8'	E066 :	26'	106,1	212,2	Trichiurus lepturus Ariomma indica Nemipterus japonicus Seriolina nigrofasciata	4, 60 4,40	2,1 2,0
13.09	1410	41	BT	244	244	N23 5	5'	E066	03'	213,0	426,0	Champsodon sp. Synagrops adeni SCIAENIDAE	352,00 52,00 19,20	12,2
13.09	2050	42	₽Ţ	57	20	N24 O	5'	E066	49'	169,2	338,4		210,00 22,50 15,00 87,00	6,6 4,4

DATE	TIME START	STN No.	GEAR Type	<u>DEPTH</u> Bottom	(M) Gear	P LAT	<u>OSI</u> IT.	<u>LONGIT.</u>	<u>CATC</u> Total	<u>H (K6)</u> Pr Hr	DOMINANT SPECIES	WEIGTH PR HR	
13.09	2305	43	BT	44	44	N24	13,	E066 59'		282,2	Apogon sp Polynemus sp. Psettodes erumei Metapenaeus monoceros	•	21,2 8,5
14.09	0155	44	BT	16	16	N24	08'	E067 12'	36,8	73,6	SHRIMPS Dtolithes ruber Umbrina sp. Trichiurus lepturus	20,00 19,20 10,00 6,00	26,0 13,5
14.09	0455	45	BT	40	40	N23	56'	E067 04'	500,4	1501,2	Pomadasys maculatus Sciaenidae. unidentified Psettodes erumei Johnieops sp.		23,5 14,3
14.09	1110	46	BT	299	299	N23	25'	E066 22'	32,4	64,8	Champsodon sp. Nibea albida Harpodon nehereus Panulirus polyphagus	28,20 17,00 12,40 2,00	26,2 19,1
14.07	1600	47	BT	124	124	N23 .	25'	E066 38'	78,0	156,0	Nemipterus sp. Pennahia argentata Acropoma japonicum Champsodon sp.	76,00 54,00 12,60 7,80	34,4 8,0
14.09	2000	48	BT	83	83	N23	36'	E066 58'	487,2	974,4	Nemipterus japonicus PLATYCEPHALIDAE Lepidotrigla sp SEPIIDAE	754,80 73,10 42,50 27,20	7,5 4,3
14.09	2145	49	PT	69	10	N23 -	40'	E067 04'	246,4	492,8	Leiognathus sp Decapterus russelli	467,20 22,56	
15.09	0030	50	BT	27	27	N23 -	45'	E067 15'	231,6	463,2	Pomadasys maculatus SHRIMPS Otolithes ruber Pomadasys hasta	286,00 24,00 50,40 16,40	5,1 10,8
15.09	0440	51	BT	18	18	N23 -	47'	E067 30'	144,6	289,2	SCIAENIDAE Argyrosomus hololepidotus	104,00 75,40	

10 mm .

4

RATE	TIME	STN	GEAR	DEPTH	(M)	10	-0 <u>51</u>	TION	īт		CH (KG)	DOMINANT SPECIES	WEIGTH PR HR	
DATE	51AKI	NO.	ITE	BOI ION	0EAN	LA 		LUND	11. 	1UIHL	га па 	DONINHNI SPECIES	FR DR	/s
15.09	0635	52	PT	24	15	N23	45'	E067	35'	365,4	730,B	Stolephorus sp	346,50	
												Dussumieria acuta	157,50	21,5
												Rhizoprionodon oligolinx	102,00 88,80	13,9
												Pomadasys hasta	88,80	12,1
												Trichiurus lepturus	78,00	10,6
15.09	0855	-53	RT	57	57	N23	37'	E067	29'	8000.0	16000.0	Dasyatis sp	4000,00	25.0
10107	0000	~~	• ·		••		••			,-	,-	Dasyatis sp Trichiurus lepturus	2400,00	15.0
												Pomadasys hasta	2400.00	15.0
												Johnieops sp.	1600,00	
15 00	1770	5.4	DT	07	6	NOT	<u>,,</u> ,	E067	177	1 र		Saurida undosquamis	1,00	1 97
19:07	1200	τu	11	U2	07	M20	44	LVU7	10	190	2,0	Ariomma indica	,60	
										,				
												Decapterus sp.		1,5
15 40		==	рт	60	f	N07	017	ENLL	507	Li	17 7	MYCTOPHIDAE	11,00	06 1
10.07	2213	JJ	F I	07	1	NZO	01	EVOO	70	0,1	1494		,40	
													7.4	
												cnampsodon sp. Decapterus Macarellus	,30	1,6
14 09	0740	54	PT	71	14	N93	15'	F047	20°	139.8	279.6	Trichiurus lepturus	18.00	6.4
10.07	V1-1V	20		~ ~ ~			10	2007	7.4	10/90	1.7.ju	Lactarius lactarius		
													7,20	
												JELLYFISH	240,00	
16.09	0915	57	BT	43	43	N23	40'	E067	317	7980.0	15960.0	Otolithes cuvieri	3164.00	19.8
			-		. –			,				Pomadasys maculatus	3164,00 2618,00	16.4
												Pomadasys hasta	2100,00	13.1
												Polynemus sp.	1414,00	g g

	A	NN	ΕX	Ι	Ι	Ι
--	---	----	----	---	---	---

Settings and performance of acoustic instruments

Echo sounders and integrators:

Frequency	38 kHz	120 kHz
Basic range (m)	0-100 / 0-250 + 250	0-100
Bandwidth	3.0 kHz	3 kHz
Pulse length	0.6 msec	0.6 msec
TVG and gain	20 logR -20 dB	20 logR 0 dB
Recorder gain	7	2
Transmitter power	1822 W	298 W
Transducer dimension (ceramic)	8 ⁰ x 8 ⁰ 30 x 30 cm	l0 ⁰ circular
Discriminator	4-7	5-6
Source level + voltage response	137.8 dB	114.9 dB
Measured	August 1983	August 1983
Integrator threshold	A: 1	0.5
	B: 1	0.5
Integrator gain	A: 20 dB x 10	10 dB x 10
	B: 20 dB x 10	10 dB x 10
Depth intervals (m)	A: 4-50	4-50
	B: 50-250 (varying vith depth)	50-100
Bottom stop	On	On

Sonar:

Sonar S 109 was used for pelagic school counting. The beam was fixed 90° starboard with 5° tilt. Schools within 50-150 m range were counted.

ANNEX IV

Fishing gear

Bottom trawl:

High opening shrimp and fish trawl with rubber bobbins of 50 cm diametre. Headrope 41 m. Opening height during trawling approximately 6 m. Mesh size in the wings 40 mm, gradually reduced to 20 mm in the cod end.

Pelagic trawl:

Capelin trawl with four equal panels, approximately 30 x 30 m at opening. Height during trawling varying between 12 and 15 m, the larger when trawling with extra floats at the surface. Mesh size at cod end 20 mm.

The pelagic trawl is monitored with a cable connected net sonde.