S 167

(Reports on surveys with the R/U Dr Fridtjof Nansen)

NORAD/UNDP/FAO
PROGRAMME GLO/32/001)

Sisheridicehtorates Bibliotehet

Cruise Report
"Dr. Fridtjof Nansen"

FISHERIES RESOURCES SURVEY
 PAKISTAN

5-16 September 1983

> ODD NAKKEN

(anchoun

Under the UNDP/FAO Global Programme (GLO/82/001) the fishery research vessel "Dr. Fridtjof Nansen" is scheduled to carry out several surveys in the North Arabian Sea during 1983-84.

R/V "Dr. Fridtjof Nansen" is placed at the disposal of UNDP/FAO by NORAD (Norwegian Agency of International Development) and the Institute of Marine Research, Bergen, Norway is responsible for carrying out the research programme in cooperation with local scientists.

The first cruise in Pakistan waters under this project was carried out in September 1983. The vessel left Karachi on 5 September at 1700 hours and the cruise was terminated at Karachi on 16 September at 2000 hours.

Scientific staff

From the Institute of Marine Research, Bergen:
O. Nakken (cruise leader), G.H.P. de Bruin, S. Myklevoll, T. Solberg, K. Strømsnes, H. Abrahamsen, T. Mørk.

From Marine Fisheries Department, Karachi:

Mohammad Arshad, Mohammad Arif.

Objectives

To carry out an acoustic survey of Pakistan waters; mapping the distribution and measuring the abundance of pelagic, demersal and mesopelagic fish.

NARRATIVE

The investigations started at the Iranian border on 6 September and were finished off the Indus delta on 16 September. The area was covered with transects about 10-15 nautical miles
apart, from the $15-20 \mathrm{~m}$ contour line out to $5-10$ nautical miles off the slope of the continental shelf (Figure 1).

The distance sailed and the number of stations worked were as follows:

Sailing distance:	2000 nautical miles
Hydrographic stations:	17
Pelagic trawl hauls:	13
Bottom trawl hauls:	44

Weather conditions were excellent. Instruments and gears functioned satisfactorily.

RESULTS

Hydrography

Figures 2-5 show the distribution of temperature, salinity, density and oxygen contents in the four hydrographic sections (Figure 1). In the upper 100 m there is a tendency that the isolines are at greater depths offshore than at the coast, indicating an anti-cyclonic movement of the offshore water masses. In all sections, water masses of low oxygen contents, $1-2 \mathrm{ml} / 1$ cover substantial parts of the continental shelf. Along the Makran coast the $2 \mathrm{ml} / 1$ isoline was observed at depths between 20 and 30 m , while off the Indus delta (Sind coast) waters of oxygen contents less than $2 \mathrm{ml} / 1$ were found at 15 m at the innermost station. The effect of the freshwater outflow from the River Indus was observed at the three innermost stations in Section IV (Figure 5). A similar salinity distribution, but much less pronounced, was found at the innermost station in Sonmiany Bay (Figure 4). The transition between the "Indus water" and the oceanic water was sharp and was easily determined from the colour contrasts at the surface; the Indus water being green-yellowish in colour while the oceanic water was deep blue. This transition could be seen at the innermost parts of all the transects off southern Sind.

Figure 6 shows the distribution of pelagic fish. The fish was distributed on the shelf areas, and no recordings of pelagic fish were made further offshore. In general the recordings were very scattered. Dense concentrations were observed at five localities, all with very limited extensions. At the Makran coast the predominant species was rainbow sardine (Dussumieria acuta). The fish occurred in scattering layers and small schools in daytime at depths between $20-40 \mathrm{~m}$, just off the bottom. During nighttime it was observed both as scattering layers and small schools at the surface. It ranged in length from $18-20 \mathrm{~cm}$. Catch rates of rainbow sardines up to 3.7 tonnes per hour were obtained in pelagic night hauls.

Other pelagic fish species were scarce in the Makran area, but scads (Decapterus spp.) and hardtail scad (Megalaspis cordyla) were caught in limited numbers at some few trawl stations.

Off Sind concentrations of pelagic fish were found in three localities (Figure 6). At the inner end of the Indus Swatch very dense recordings of anchovy (Stolephorus sp.) were obtained in mixture with juvenile rainbow sardine. The fish was distributed in large schools or scattering layers at depths between surface and 20 m over $30-40 \mathrm{~m}$ bottom depth, but the extension of the area was limited to 2-3 square nautical miles. Quantities of bottom fishes - rays, sharks, grunts and croakers - were feeding on these concentrations.

Scattering layers and small schools of rainbow sardine, ranging from $10-20 \mathrm{~cm}$ in length, were observed in two localities off Sind at bottom depths between 60 and 80 m . During the day the fish occurred in small schools close to the bottom, at night it dispersed into a scattering layer at $30-40 \mathrm{~m}$ depth. In the Sind area the maximum catch rate of pelagic fish was about 500 kg per hour in the pelagic trawl.

Bottom fish

The distribution of bottom fish is shown in Figure 7. Relatively dense patches were observed several places along the Makran coast while the recordings off Sind were more scattered. At the Makran coast the concentrations of bottom fishes were predominated by hairtails (Trichiurus lepturus and Lepturacanthus savala) which made up the bulk of the catches in the area. The hairtails were observed as weak scattering layers both at the bottom and in midwater over bottom depths ranging from 25-30 m to the edge of the shelf. Grunts (Pomadasys sp.) and croakers (Epinephelus spp.) were also frequently caught in the bottom trawl hauls but in significantly less quantities than hairtails. Catch rates up to 6 tonnes per hour trawling were experienced.

Off Sind, both the recordings and the catches of bottom fish were more variable than at the Makran coast. In most of the investigated area the abundance was found to be low, and dense patches of fish were found only at two localities, in southern Sonmiany Bay and at the inner end of the Indus Swatch. In Sonmiany Bay catfish was the predominant scatterer, while small-sized croakers and grunts together with hairtails and rays made up the bulk of the catches off the Indus delta. Catch rates up to 16 tonnes per hour were obtained in bottom trawl hauls. On the outer banks off Sind, catch rates were low and variable and the threadfin bream (Nemipterus japonicus) was a major constituent.

Mesopelagic fish

Recordings of mesopelagic fish (Figure 8) were made at and off the edge of the continental shelf in the entire area. The fish showed the usual daily migration pattern: small schools and scattering layers at depths of 150 m or more in daytime and a scattering layer in the upper 50 m during the night. The recordings were mainly scattered and the catch rates were low. Lantern fish (Myctophidae) was predominant in the mesopelagic fish layer.

Plankton

In most of the shelf areas planktonic scatterers contributed the major part of the total echo abundance (the integrated echo energy) (Figure 9). Jellyfish and krill (Euphausiids) were probably the main contributors. Planktonic scattering layers were observed in all depths both during day and night at densitites which to a great extent made it impossible to obtain reliable integration values of scattered fish. The planktonic layers showed no systematic differences in back scattering strength at the echo sounder frequencies 38 kHz and 120 kHz .

At the eastern Makran coast and in Sonmiany Bay the trawl hauls indicated that krill was a major constituent of the planktonic biomass, while different kinds of jellyfish were caught in quantities off Sind.

Surface observations

Figure 10 shows the surface observations which were made. Large whales were spotted off the eastern coast of Makran, probably feeding on the quantities of krill in that area. Dolphins were observed at the outer end of the transects off Sind.

Due to bioluminescence, surface schooling fish could easily be spotted also at nighttime. In the offshore part of the southernmost transect a strange occurrence of bioluminescence was observed. At a distance it looked like waves of light moving at the sea surface at a high speed, 10-20 times the speed of the vessel (10 knots). The phenomenon was obviously caused by bioluminescence originating from sources which were situated $1-3 \mathrm{~m}$ apart. All these sources within a $10-30 \mathrm{~m}$ wide belt were triggered on and off with a short time delay from one side to the belt to the other, thus giving the impression of "waves of light" propagating through the water. The pulsations were quite regular, 95-100 per minute, and observed over a distance of 3-4 nautical miles. The observation was made between 0100 and 0200 hours local time. The sea was almost calm with a
small swell of $1-1.5 \mathrm{~m}$ height from southwest. It seems unlikely that the regular periodic "behaviour" of the phenomenon could be caused by the observed sea state or other physical factors. More likely the bioluminescence itself enabled the organisms to adjust their flash frequency and phase in order to strengthen the light intensity. Plankton samples from a Juday net hauled in the surface layers were preserved for later analysis.

Fig. 2. Section I: Ras Jiwani - South, 6-7 September 1983. Temperature, salinity, density and oxygen contents.

Fig. 3. Section II: Astola Isl. - South, 9 September 1983. Temperature, salinity, density and oxygen contents.

$$
\text { Pakistan, 5-16 September } 1983
$$

Pakistan, 5-16 September 1983

-غ86T xəquəəđəs 9T-s ‘ue7sṭyed
$\cdot 8 \cdot 6 T+\boldsymbol{H}$ Mesopelagic fish distribution.

Fig. 9. Plankton distribution. "Dr. Fridtjof Nansen"s fisheries resources survey, Pakistan, 5-16 September 1983.
-ع86T xəquəəđəs 9t-s ‘ue7sṭyed

ANNEX I : Details of fishing stations with dominant species.


```
Thmat peres
```

07.69	0640	127	25	25	M23 0: Ebi 58	51,5	66,6	Lepturachthus Exila	T2, 40
								CARChthmidas	72, 40
								Fomadeys hata	86,40
								Arus n	8, 40

07.19680	2 IT	47	47	N24 59% E02 01	68,8	157,	Lepturanthus savia	32.00	71,
							Sepia phatemis	3,60	B,
							Rhizapriondon acutus	22,60	H, 4
							Epinephelus unfulous	16.80	A,

07.091150	3 BT	80	80	N24 $30^{\prime} \mathrm{EOE} 26^{\circ}$	44,5	89, 0	Stolthodes bieuritus	41,00	46,0
							Laptreanthas savas	10, 80	12,1
							Ariue $\mathrm{EP}^{\text {a }}$	7,20	E, 0
							Strimat	6,00	6.7
							TLYFISH	10,0	11,2

07.09100	6 E	28	28	W2 06 E62 24	34,0	68,0	Arus $=$	25,00	41.
							Phinoters Ep:	2, 00	9, 4
							Lenturacarthas sevas	14,20	20.
							Shnims	4,40	, 4

07.09 212	7 F	40	10	125 84, 206230	76.6	190,2	Dusumiera meta	100, 00	78.
							Lepturachthus savas	60, 00	4
							Fhizomionoton actus	31,40	1:

Decapterus fusenli
560,00 12:8

WHREREOUTAE
150,60 63,

$$
\text { Gymura } 5 p .
$$

Duathes ruber
$\begin{array}{ll}160,0 & 7 \\ 141,0 & 5\end{array}$
$\begin{array}{ll}14,0 & 5 \\ m, 7 & 4\end{array}$

08.09	1225	11 ET	15	15		76,1	152,2	Shmura Lepturacanthes savala Epinephelus diactithus Arise	$\begin{array}{r} 72,0 \\ 40,0 \\ 30,0 \\ 7,6 \end{array}$
08.09	1705	12 BT	20	20	H25 03' E06 25	138,7	277,8	Lepturacanthus savala Arius sp Carangoides talamparoides Argyoops spinifyr	$\begin{aligned} & 120,0 \\ & 8,8 \\ & 12,50 \\ & 12,8 \end{aligned}$
08.07	1945	13 ET	34	34	N24 59: E063 $29{ }^{\circ}$	1590,3	3180,6	Jellyfish Lepturacenthus savila	$3000,6$ 749
07.07	0405	14 FT	8500	30	N24 $49^{\circ} \mathrm{EOSJ} 49^{\prime}$	420,0	840,0	WYCDPHIDAE	880,0
07.07	0805	1587	68	60		617,8	1235,6	Fenmahia Ep . Lepturacanthus savala	$\begin{aligned} & 664,0 \\ & 564,0 \end{aligned}$
07.07	1005	16 FI	80	20	$12488^{\circ} \mathrm{E055} 40^{\circ}$	10,0	20,0	dellyth	20,0
07.07	1225	17 BT	12	12	H25 15 506345^{3}	594,5	1189,0	Arius eq Acanthafagrus Ep . Lepturacanthus savala bymura sp .	$\begin{aligned} & 24,0 \\ & 278,0 \\ & 192,00 \\ & 146,0 \end{aligned}$
09.09	1550	18 Bl	12	12	W25 $07{ }^{\circ} \mathrm{E064} 07$	46,6	73,2	huramencokidat Lepturacanthus savala bymura g . Aries 5 F	$\begin{aligned} & 60,0 \\ & 40,00 \\ & 20,00 \\ & 6,20 \end{aligned}$
07.09	1855	17 \#1	25	25		525,7	1051,4	GUACHIAE Parapenaeopsis stylifera Epinephelus diacanthus Argyrops spinifer dELYFIGH	$\begin{gathered} 100,01 \\ 06,46 \\ 69,40 \\ 49,06 \\ 56,0 \end{gathered}$
09.09	2105	20 PT	17	10	H25 01 206420°	3053,6	6667,2	Lepturacanthus sayala Krill Sconterolues commersonianus Megalaspis cordyla	$\begin{aligned} & 1000,0 \\ & 300,0 \\ & 100,8 \\ & 100,4 \end{aligned}$
10.09	075	21 ET	16	16	W25 06 E064 42	178.8	387.6	Arise 5 F MURENESUTDAE Dtuithes mer Eymura sp .	$\begin{aligned} & 100,0 \\ & 80,0 \\ & 7,0 \\ & 50,0 \end{aligned}$

THE STH GEAR DEPH M POSIIDO CATCH MG DATE START HE TPE EOTTOH GEAR LATIT. LOMET. TOTAL FR HR

DonThant Spetes

MEET WO

10.09	1955	25 FT	200	70	12500	006330	165,0	330,0	Lepturacanthus savala	330.00	100,0
10.09	2205	26 BT	3	33	$12500^{3} \mathrm{E065} 32$		B79	16.7	Trichurus lepturus	6, 49	38,
								Arius mp	585	35,6	
								Otolithes ruber	, 81	4,8	
								Saurida tumbil	, 75	4,4	

 Menipteras japonicus 4b,00 3,4

SCIAEMTMAE
Sauride tumbil
Trichiurus lepturus
$105,00 \quad 20,0$ $75,60 \quad 20 ; 0$ 2,60 3,

TIME STA GEAR DEPTH (H) POSILIOM CATCH WG
DATE START Mo. TYPE GOTTOH gEAR LATHT. LONGIT. TOTAL PR HI
DOMHAM STETES

271,20	74,7
52,80	14,5
20,40	5,6
4,40	1,2

2000,00 79,0
$202,80 \quad 8,0$
50,06 1,7
$38,00 \quad 1,5$

12.09	1355	35 H	73	73	12440	E066 25:	71,9	143:8	Trichiorus lepturus	56,00	38.9
									Memipterus japonicus	37,00	25,7
									Sphyrama obtusata	18,00	12,
									Leiognethus sp	13,80	7, 5

12.09	1950	36 PT	115	10	N 2417	E065 58°	140,0	280, 0	MVCTOPHIDAE	242,00	86, 8^{4}
									Sphyraena obtusata	25,60	7,
									Champsodon 50.	7,20	2,5
									Echeneis sp	4,40	1,5

$13.09 \quad 0415$	38 BT	22	22	N24 36' 506655	181,8	363,6	Pomadasys hasta	157,50	43, 3
							Arqurosomus hololepidotus	32,60	9,0
							ScianidaE. unidentified	27,00	7,4
							Protonibes diacanthus	26,20	7,2

Arionta indica $\quad 4,60 \quad 2,1$
Henfterus japonicus $\quad 4,40 \quad 2,0$
Seriolima nigrofasciata 300 is

Synagrops adeni $\quad 52,00 \quad 12,2$
SCIAEHDAE $\quad 17,20 \quad 4,5$

Sardinella sindensis 2,50 b,b
JUENLE FISHES 15,00 4,4
TELYESH 87,60 25,7

14.09	0155	44 BT	16	16	N2 ${ }^{\prime} 00^{\prime}$ E067 12	36,8	73, 6	SHRTMF Otolithes ruber Umerine 5 F . Trichiurus lepturus	$\begin{gathered} 20,00 \\ 17,20 \\ 10,00 \\ 6,00 \end{gathered}$	$\begin{gathered} 27,1 \\ 26,0 \\ 15,5 \\ 8, \\ 8, \end{gathered}$
14.09	0455	45 BT	40	40	N22 56 E067 $04{ }^{\prime}$	500,4	1501,2	Fomadasys maculatus Seiamidas unidentified Fsettodes arumei Johnieqps 5p.	$\begin{aligned} & 597,60 \\ & 552 ; 60 \\ & 216,00 \\ & 158 ; 40 \end{aligned}$	$\begin{aligned} & 37,8 \\ & 23,5 \\ & 14,5 \\ & 10,5 \end{aligned}$
14.09	1110	4687	299	299	N23 25, E066 22	32,4	64,8	Champodon in. Nibea alhida Harpodon nehereus Panuliras polyhagas	$\begin{array}{r} 28,20 \\ 17,60 \\ 12,40 \\ 2,00 \end{array}$	$\begin{gathered} 43,5 \\ 26,2 \\ 17,1 \\ 3,0 \end{gathered}$
14.09	1600	47 BT	124	124	N23 25^{\prime} E066 36	78,0	153,0	Nemipterus sp. Pemahia argentata Acropoma japonicuin Chatpeodon 5 .	$\begin{aligned} & 76,60 \\ & 54,00 \\ & 12,60 \\ & 7,60 \end{aligned}$	$\begin{aligned} & 40,7 \\ & 34,5 \\ & 0,0 \\ & 5,0 \end{aligned}$

14.19	2000	48 BT	83	83	W23 36 E06 56*	487,2	974, 4	heripterus japonicus Fatycephalidat Lepldotrigla sp SEPITME	$\begin{aligned} & 754,80 \\ & 73,10 \\ & 42,60 \\ & 27,70 \end{aligned}$	$\begin{aligned} & 77,4 \\ & 754 \\ & 4,5 \\ & 2,7 \\ & 2,5 \end{aligned}$
14.09	2145	49 FT	69	10	N23 40' E067 04.	246,4	492,8	Leicgnithus Decapterus russelli	$\begin{aligned} & 467,20 \\ & 22,56 \end{aligned}$	$\begin{gathered} 94,8 \\ 4,5 \\ 4,5 \end{gathered}$
15.09	0030	50 BT	27	27	W2 43 206715	231,6	463,2	Ponadasy machatus G⿵冂1 1 P9 Otolithes ruter Pondasys hasta	$\begin{aligned} & 28,00 \\ & 24,00 \\ & 50,40 \\ & 16,40 \end{aligned}$	$\begin{array}{r} 61, \\ 5,1 \\ 10,8 \\ 3,5 \end{array}$

15.090440	518	18	18	12347	506730	144, 6	289,2	Sciantidat	104,60	35.9
								Argyosomus holotepidotus	75,40	$2 b_{;} 0$
								Johnieops 5p.	22,80	7, 8
								Pomedays hasta	15,00	5.

15.07	0635	52 FT	24	15	N23 45' E067 35'	$365 ; 4730 ; 8$	Stolephorus 5p Dussumieria acuta Rhizoprionodon oligolina Powdasys hasta Trichiurus lepturus	$\begin{aligned} & 346,50 \\ & 157,50 \\ & 102,00 \\ & 80,60 \\ & 76,60 \end{aligned}$	$\begin{aligned} & 47,4 \\ & 21,5 \\ & 15,9 \\ & 12,1 \\ & 10,6 \end{aligned}$
15.09	0855	53 BT	57	57	N23 37' E067 27^{\prime}	8000, 016000,0	Dasyatis 5 p Trichiurus lepturas Pomadasys hasta Johnieqpesp.	$\begin{aligned} & 4000,00 \\ & 2400,00 \\ & 2400,00 \\ & 1600,00 \end{aligned}$	$\begin{aligned} & 25,0 \\ & 15,0 \\ & 15,0 \\ & 10,0 \end{aligned}$
15.69	1230	54 FT	82	64	N23 22, 006713	1,3 2,6	Saurita undosquatis Ariowna indica CEFHALOPDDA Decapterus 5 p.	$\begin{aligned} & 1,00 \\ & , 60 \\ & 40 \\ & , 04 \end{aligned}$	$\begin{gathered} 30,4 \\ 23,0 \\ 15,3 \\ 1,5 \end{gathered}$
15.09	2215	55 FT	89	1	N23 013 E066 56\%	6,1 12,2	HVCTOPHIDAE Sphyraena obtusata Champsodon sp: Decapterus Macarellus	$\begin{array}{r} 11,00 \\ , 40 \\ , 70 \\ , 20 \end{array}$	$\begin{gathered} 90,1 \\ 3,2 \\ 2,4 \\ 1,6 \end{gathered}$
16.09	0240	56 FT	31	16	W23 $15^{\prime} \mathrm{EOH7} 20^{\circ}$	139,6 279,6	Trichiurus lepturus Lactarius lectarius Sphyranena obtusata JELUTISH	$\begin{array}{r} 10,00 \\ 12,00 \\ 7,20 \\ 240,00 \end{array}$	$\begin{array}{r} 6,4 \\ 4,2 \\ 2,5 \\ 85,8 \end{array}$
16.09	0915	57 日T	43	43	N23 $40{ }^{\circ} \mathrm{E} 06733^{\prime}$	7980,0 15960,0	Dtolithes cuvieri Pomadasys maculatus Poliadasys hasta Folynemus ip.	$\begin{aligned} & 3164,00 \\ & 2618,00 \\ & 2100,00 \\ & 1414,00 \end{aligned}$	$\begin{gathered} 19,8 \\ 16,4 \\ 13,4 \\ 8,8 \end{gathered}$

ANNEX II : Length frequency distributions of some important species.

$$
\begin{aligned}
& \text { ArgYr ops Gipinifen } \\
& \text { STATION NO. OIO MEAN LENGTH }=18 \text {, Jcm } N=31
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nemipterre jeaprarnicers } \\
& \text { STATION NO. O4O MEAN LENGTH }=24,1 \mathrm{~cm} \quad \mathrm{~N}=16
\end{aligned}
$$

Nemipterves japarichs

Settings and performance of acoustic instruments

Echo sounders and integrators:

Frequency	38 kHz	120 kHz
Basic range (m)	$0-100 / 0-250+250$	0-100
Bandwidth	3.0 kHz	3 kHz
Pulse length	0.6 msec	0.6 msec
TVG and gain	$20 \operatorname{logR~-20~dB~}$	$20 \operatorname{logR~} 0$ dB
Recorder gain	7	2
Transmitter power	1822 W	298 W
Transducer dimension (ceramic)	$\begin{array}{llll} 8^{\circ} & \times & 8^{0} \\ 30 & \times & 30 \mathrm{~cm} \end{array}$	10° circular
Discriminator	4-7	5-6
Source level + voltage response	137.8 dB	114.9 dB
Measured	August 1983	August 1983
Integrator threshold	A: 1	0.5
	B: 1	0.5
Integrator gain	A: $20 \mathrm{~dB} \times 10$	$10 \mathrm{~dB} \times 10$
	B: $20 \mathrm{~dB} \times 10$	$10 \mathrm{~dB} \times 10$
Depth intervals (m)	A: 4-50	4-50
	$\begin{aligned} & \text { B: } 50-250 \\ & \text { (varying vith depth) } \end{aligned}$	50-100
Bottom stop	On	On

Sonar:
Sonar S 109 was used for pelagic school counting. The beam was fixed 90° starboard with 5° tilt. Schools within $50-150 \mathrm{~m}$ range were counted.

Fishing gear

Bottom trawl:

High opening shrimp and fish trawl with rubber bobbins of 50 cm diametre. Headrope 41 m . Opening height during trawling approximately 6 m . Mesh size in the wings 40 mm , gradually reduced to 20 mm in the cod end.

Pelagic trawl:

Capelin trawl with four equal panels, approximately $30 \times 30 \mathrm{~m}$ at opening. Height during trawling varying between 12 and 15 m , the larger when trawling with extra floats at the surface. Mesh size at cod end 20 mm .

The pelagic trawl is monitored with a cable connected net sonde.

