

SURVEYS OF THE FISH RESOURCES OF NAMIBIA

Preliminary Report Cruise No 2/94

Part I

Surveys of the hake stocks
26 April - 31 May 1994
and

Part II
Surveys of the pelagic stocks
1 June - 23 June 1994

The DR FRIDTJOF NANSEN RESEARCH PROGRAMME is sponsored by the Norwegian Agency for Development Cooperation (NORAD), the Food and Agriculture Organization of the United Nations (FAO), and the United Nations Development Programme (UNDP). The programme in Namibia is organized and planned under agreements between NORAD, Namibian authorities and the Institute of Marine Research, Norway Its execution is the responsibility of the Institute of Marine Research, Bergen in cooperation with the Ministry of Eisheries \& Marine Resources of Namibia.

The progranme has comprised the following surveys:

Survey	$1 / 90$	25 January to 19 March 1990
"	2190	27 May to 20 lune 1990
"	3/90	11 September to 6 October 1990
"	$1 / 91$	25 January to 23 March 1991
"	$2 / 91$	23 October to 16 December 1991
	$1 / 92$	23 April to 21 June 1992
,	$2 / 92$	20 October to 16 December 1992
"	$1 / 93$	20 January to 19 March 1993
"	$2 / 93$	21 April to 25 May 1993
"	1/94	19 January to 21 February 1994*
"	2/94	26 April to 24 June 1994

* First survey with the new R/V Dr. Fridtjof Nansent.

PART I

SURVEYS OF THE HAKE STOCKS
26 April - 31 May 1994

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1
1.1 General objectives 1
1.2 Objectives of survey $2 / 1994$ 1
1.3 Participation 2
1.4 Narrative 2
CHAPTER 2 HYDROGRAPHY 6
CHAPTER 3 RESULTS OF THE ACOUSTIC AND TRAWL SURVEY 18
3.1 Discussion of methods 18
3.2 SOUTHERN REGION, Orange River to St. Francis Bay 19
3.3 CENTRAL REGION, St. Francis Bay to Ambrose Bay 25
3.4 NORTHERN REGION, Ambrose Bay to Cunene River 31
CHAPTER 4 CONSIDERATIONS ON THE SURVEY RESULTS 36
Annex I Size composition of main stocksAnnex II The size composition of hake stocks split into length cohorts throughoptimizing techniques
Annex III Records of fishing stations
Annex IV Instruments and fishing gear used
Annex V Work note on recruitment variations in the Namibian stock of Cape hake

CHAPTER 1 INTRODUCTION

1.1 GENERAL OBJECTIVES

Following an offer from NORAD extended through FAO and UNDP, an agreement was reached in Windhoek in January 1990 between the UNDP Resident Representative and Namibian authorities for the execution of a programme of surveys of the fish resources of the Namibian shelf with the RV 'Dr. Fridtjof Nansen'.

The main objectives were agreed as follows:

To describe the distribution, composition and abundance of the most important fish resources. Small pelagic fish, including horse mackerel, pilchard and anchovy would be investigated by the acoustic integration method combined with sampling with mid-water and bottom trawls. A swept area trawl survey programme would be used for the demersal stocks. All catches would be sampled by species, weight and numbers, including biological sampling of the commercially important stocks.

To carry out environmental studies including recording of surface temperature on a continuous basis and hydrographic sampling on a series of fixed profiles.

1.2 OBJECTIVES OF SURVEY $2 / 1994$

The main objective was to continue the time series obtained with the old 'Dr. Fridtjof Nansen' of the demersal trawl surveys on the hake stocks. This vessel concluded her operations in Namibia in June 1993. As part of the survey program, the complete demersal fish community within the distribution range of the hake stocks would be studied. The less abundant, but commercially important species as monk, sole and kingklip would be given a special emphasis.

The acoustic system was used to observe possible mid-water occurrence of the hakes. The survey design for the swept-area trawl programme was based on a semi-random distribution of hauls along transects perpendicular to the coast. The transects were intended to cover the depth ranges
of the two hake species and with a density of stations adapted to the expected fish densities. Biomass estimates of hake were based on post stratification by depth and density aggregations.

1.3 PARTICIPATION

The scientific staff consisted of:

From Namibia:
Filimon Dauseb, Hashali Hamakuaya, Malakia Shimanda and Jamy Traut (26.4-31.5)
Michael Evenson, Anke Lehmensiek and Heinie Lesch (26.4-16.5)
Michael O'Toole (5.5-16.5)
Johnny Gamathan, Siegfred Gowaseb and Benny Ushona (18.5-31.5)

From Norway:
Oddgeir Alvheim, Terje Haugland and Erling Molvær (26.4-31.5)
Tore Strømme (5.5-16.5), Sigbjørn Mehl (18.5-31.5)

1.4 NARRATIVE

The course tracks with the positions of the fishing and hydrographic stations are shown in Figures $1 \mathrm{a}-\mathrm{c}$.

The vessel left Walvis Bay on the evening of 26 April and steamed south for about 36 hours to the Orange River to commence the work. The trawl stations were randomly distributed along transects perpendicular to the coast, about 25 NM apart. CTD-stations were taken on every trawl station, and additional CTD-stations were taken along standard hydrographic transects. On 5 May the vessel called on Lüderitz to pick up two members of the scientific staff, and continued to cover the Southern Region and the southern part of the Central Region. On 16 May 'Dr. Fridtjof Nansen' came to Walvis Bay to exchange personnel and celebrate the Norwegian Constitution Day on 17 May. The cruise continued on the morning of 18 May in the northern part of the Central Region and proceeded to the Northern Region. In order to avoid steaming during day time, 5 transects were passed to be taken on the way back to Walvis Bay. The northern point of the survey area (off the Cunene River) was reached on 25 May, and 'Dr. Fridtjof Nansen' headed for Walvis Bay, taking the 5 last transects on the way southward. The weather conditions were generally favourable except for a few days with gale, and the programme was completed according to the plans. 210 bottom trawl and 196 CTD-stations were sampled.

Figure la

4

Figure lb
Central Region (St. Francis Bay to Ambrose Bay). Course tracks, fishing stations and hydrographic stations.

5

Figure lc
Northem Region (Ambrose Bay to Cunene River). Course tracks, fishing stations and hydrographic stations.

CHAPTER 2 HYDROGRAPHY

Surface sea temperature could not be collected during the survey, as a new data logging system was still under development.

Bottom temperature and oxygen were recorded at all fishing stations (Figures 2a-c and 3a-c). This was done in order to investigate the effect of these parameters on the distribution of the hake. Low oxygen conditions characterize the shelf environment until beyond 200 m bottom depth from Lüderitz and northwards and parts of the shallow waters until 100-150 m between Conception Bay and Rocky Point have values less than $0.25 \mathrm{ml}_{2} / \mathrm{l}$.

The oxygen maps were overlaid with the distribution maps of the Cape hake in Figures $4 \mathrm{a}-\mathrm{c}$. They show that the main part of the hake stock is found between the oxyclines $0.25 / 0.5$ and $1.0 \mathrm{ml} / \mathrm{l}$, indicating that this species can easily tolerate such relatively low figures.

The vertical distribution of temperature, salinity and oxygen along four standard hydrographic transects, collected with a CTD and an attached rosette for water samples, are shown in Figures 5a-c.

In the southern region, off Panther Head, the surface waters are characterized by relatively warm water ($16-18^{\circ} \mathrm{C}$) with a narrow upwelling zone with colder $\left(13-15^{\circ} \mathrm{C}\right)$ water close to the coast. Much of the shelf and coastal waters had high values of oxygen and the offshore water was relatively stable and defined by a strong thermocline at about 50 m depth. Further to the north, off Dolphin Head, upwelling was intense in the subsurface coastal waters. Oxygen deficient waters at the bottom had developed and the 0.5 ml oxycline was located approximately at the 200 m depth contour.

In the central region, the low oxygen conditions on the bottom prevail and there are indications of upwelling in the coastal surface waters.

In northern waters, upwelling was recorded off Dune Point, and the 0.5 ml oxycline was now located at 300 m bottom depth.

Figure 2a Orange River to St. Francis Bay. Distribution of sea temperature near the bottom.

Figure 2b St. Francis Bay to Ambrose Bay. Distribution of sea temperature near the bottom.

Figure 2c Ambrose Bay to Cunene River. Distribution of sea temperature near the bottom.

Figure 3a Orange River to St. Francis Bay. Distribution of oxygen (ml / l) near the bottom.

Figure 3b St. Francis Bay to Ambrose Bay. Distribution of oxygen (ml / l) near the bottom.

Figure 3c Ambrose Bay to Cunene River. Distribution of oxygen (m / l) near the bottom.

Figure 4a Orange River to St. Francis Bay. Distribution of Cape hake and oxygen (ml / l) near the bottom.

Figure 4b St. Francis Bay to Ambrose Bay. Distribution of Cape hake and oxygen (ml / l) near the bottom.

Figure 4c Ambrose Bay to Cunene River. Distribution of Cape hake and oxygen (ml / I) near the bottom.

Figure 5a Orange River to St. Francis Bay. Temperature, salinity and oxygen in the standard profiles worked.

Figure 5b St. Francis Bay to Ambrose Bay. Temperature, salinity and oxygen in the standard profiles worked.

Figure 5c Ambrose Bay to Cunene River. Temperature, salinity and oxygen in the standard profiles worked.

CHAPTER 3 RESULTS OF THE ACOUSTIC AND TRAWL SURVEY

3.1 DISCUSSION OF METHODS

In the trawl survey programme all catches were sampled for composition in weight and numbers by species. The bottom trawl has a headline of 31 m (float line), a footrope of 47 m , estimated headline height of 5 m and a distance between the wings during towing of about 18 m . All trawl hauls were monitored by SCANMAR trawl sensors (bottom contact, headline height and distance between the doors). This technology allows to determine with improved accurracy and the actual time the trawl is on the bottom. For conversion of catch rates to fish densities the area between the wings is assumed to be the effective fishing area i.e. the retention factor q is equal to 1 . With the new vessel, a new trawl gear was introduced with smaller bobbins. This gear gives better bottom contact and higher catch rates for bottom dwelling species as monk and sole. For the hake species the new gear is assumed to have no difference in performance. The trawl doors, net, warp and wire dimensions are as with the former vessel (see Annex IV). The length of a haul, recorded as distance trawled, was measured by Doppler log on the bottom.

The problem of mid-water occurrence of hake and its effect on the swept area assessments has been discussed in earlier cruise reports. As in previous investigations off-bottom hake in midwaters constituted only a minor problem in the south and in the central area. In the north it made up at average an 8% addition to the demersal biomass in the day hauls and in a more limited number of night hauls the average correction was 35% (Table 1). These corrections are much lower than those applied for the same area in survey $1 / 94$ and are believed to be more representative (Table 1). However, it still seems probable that the relatively high rate of midwater occurrences observed in the north have caused a negative bias and that the stock biomass for this area may be underestimated.

Table 1 Hakes. Frequency of observations of hake in midwater during trawling. No. of trawl stations with swept area densities and no. of stations with observations of hake above 5 m from bottom with acoustic density estimate (tonnes/ nm^{2}).		
ORANGE RIVER - ST. FRANCIS BAY	DAY	NIGHT
Trawl		
No. stations	60	16
Mean density	43.9	9.5
Acoustic obs.		
No. stations	11	3
Mean density	7.2	2.3
Average acou. corr.	3\%	5\%
ST. FRANCIS BAY AMBROSE BAY		
Trawl		
No. stations	52	15
Mean density	20.7	9.4
Acoustic obs.		
No. stations	10	2
Mean density	2.7	2.9
Average acou. corr.	3\%	4\%
AMBROSE BAY -		
CUNENE RIVER		
Trawl		
No. stations	47	11
Mean density	26.2	16.5
Acoustic obs.		
No. stations	10	6
Mean density	9.4	10.7
Average acou. corr.	8\%	35\%

3.2 SOUTHERN REGION, ORANGE RIVER TO ST. FRANCIS BAY

The complete record of the fishing stations is shown in Annex III. Table 2 shows the catch rates of the main commercial species standardized to $\mathrm{kg} /$ hour for the shelf and the slope separately. Compared with the January-February survey the mean catch rates for the hakes are about 30% higher on the shelf and 40% higher on the slope. The mean monk catch rates have decreased by over 80% on the shelf and almost 40% on the slope, but they are still well above the rates obtained in previous years. The catch rate of kingklip increased by about 75% on the slope. The catch rates of the soles have not increased and are low as compared with the other commercial species.

Table 2. Southern Region. Catch rates in $\mathrm{kg} /$ hour by main groups by swept area bottom trawl for the shelf and the slope.

SHELF 50-259m

ST.NO	DEP	Hakes	Monk	Kingklip	Soles	Squid	Other
153	96	77.3		9.1	4.8		33.2
154	147	1291.0	8.0			17.8	1329.5
155	175	107.3				17.3	28.2
156	174	103.0	1.9	115.1		2.4	70.2
165	215	160.0				1.7	720.2
166	167	223.2	1.4			9.1	193.2
167	159	77.8	4.3	4.7		0.5	83.8
168	152	1123.0		5.9		28.8	343.1
169	172	1005.3	5.2			17.7	345.2
170	177	225.8	12.1			4.6	84.6
171	181	474.5	11.2	3.0		66.0	613.5
175	162	32.5					88.0
184	160	189.7			6.4	1.0	30.0
185	123	15.1				0.1	3.2
186	144	46.8					0.6
187	210	311.4					4.8
197	259	134.9					37.4
213	255	474.9	18.8			0.2	8.0
214	186	165.0					101.0
215	200	512.6					38.8
216	255	6689.0					4.7
223	182	2186.0					47.9
224	224	880.5			1.7	0.8	194.5
232	249	632.1	15.5		2.5	14.2	487.8
233	187	257.0					174.0
MEAN		695.8	3.1	5.5	0.6	7.3	202.6

SHELF 260-700m

ST.NO	DEP.	Hakes	Monk	Kingklip	Soles	Squid	Other
157	382	432.4	33.3	14.6		18.4	158.2
158	468	1919.4		41.6			15.4
159	592	316.4				0.3	102.4
160	400	2051.9	9.2	123.8		7.9	103.3
161	320	692.8	45.7	31.4			620.4
163	443	2045.6		29.0		7.6	64.8
164	552	506.6				0.4	86.9
172	599	181.0				6.5	62.3
173	552	35.6					60.0
174	451	1407.2		30.9		20.4	103.1
176	437	524.6		13.6		11.6	54.8
177	550	219.5				19.6	34.6
178	378	973.7				19.8	62.1
179	540	536.4				4.1	67.0
180	588	69.2					268.1
181	475	90.5				1.7	119.9
182	380	2998.3		6.2			51.9
183	262	2297.7		5.5		1. 1	317.1
188	288	1627.3	7.8			32.6	123.9
189	343	1961.7				10.1	199.0
190	426	1437.0	4.7	21.3		20.6	139.0
191	501	34.9				3.1	21.5
192	596	160.8		7.4		1.1	138.2
193	546	388.0				0.9	78.5
194	448	203.6		2.2		0.1	17.5
195	393	3962.9	21.8	25.1			272.6
196	330	4892.8	73.9	7.3			271.7
199	260	490.0					1. 5
200	300	2306.6	18.8	651.6	6.7		29.1
201	348	609.4	22.3	124.8			63.3
202	376	3182.0	10.0	8.1		10.4	310.0
203	403	4030.5		19.9		7.2	324.5
204	419	2049.7				11.3	105.3
205	463	59.7				0.6	40.2
206	552	211. 2					262.0
207	607	1192.8					4877.0
208	417	5790.4	49.1	14.8		6.0	393.7
209	396	1460.8	26.4	35.8		5.6	408.0
210	376	5081.1	118.0	21.9			244.7
211	332	6803.2	30.2	2.9			345.6
212	292	6374.6	85.0	1. 5	7.1		61.6
217	280	1961.6	109.3		18.1		70.6
218	335	1581.4	111.3			0.2	209.7
219	410	67.1	91.3	22.0			200.0
221	599	452.1	11.0			22.6	126.7
222	465	2086.5		8.6		24.0	47.3
225	310	2645.7	58.0			12.5	291.6
226	341	1889.4	13.7				44.5
227	454	218.5	2.9	4.1		0.9	115.8
228	552	501.6	32.9			60.1	324.9
229	401	310.8	85.2	2.2		23.7	400.0
230	500	321.7	20.3			59.9	341.5
231	600	632.7				23.6	459.0
MEAN		1590.2	20.6	24.1	0.6	8.6	258.7

The depth distribution of the two hake species based on the catch rates converted to densities are shown in Table 3. Except for the Cape hake in shallow waters and deep water hake in 250-350 m , all densities are higher than in the previous survey for both species.

Table 3 Southern Region. Depth distribution of the two hake spacies. Mean densities in tonnes $/ \mathrm{nm}^{2}$ and mean catch rates $\mathrm{kg} /$ hour.					
	$100-250 \mathrm{~m}$	$250-350 \mathrm{~m}$	$350-450 \mathrm{~m}$	$450-550 \mathrm{~m}$	550-650m
Cape hake Density Catch rate	$\begin{array}{r} 5.8 \\ 175 \end{array}$	$\begin{array}{r} 58.9 \\ 1770 \end{array}$	$\begin{array}{r} 5.8 \\ 175 \end{array}$	$\begin{array}{r} 0.1 \\ 3 \end{array}$	
Deep w. hake Density Catch rate	$\begin{array}{r} 0.3 \\ 10 \end{array}$	$\begin{array}{r} 8.6 \\ 260 \end{array}$	$\begin{array}{r} 60.5 \\ 1810 \end{array}$	$\begin{array}{r} 22.2 \\ 670 \end{array}$	$\begin{array}{r} 12.2 \\ 370 \end{array}$
No. of hauls	21	17	17	17	11

The distribution of the two hake species based on plots of densities by fishing stations is shown in Figures 6 and 7. These include the acoustic estimates of fish present above the 5 m bottom channel during trawling as discussed above. The distribution pattern of the two species is similar to that found in the previous surveys with relatively high densities of Cape hake extending from $25^{\circ} \mathrm{S}$ to about $28^{\circ} \mathrm{S}$.

Biomass estimates based on a post-stratification of the densities as shown in Figure 6 and 7, give 240000 tonnes for the Cape and 215000 tonnes for the deep water hake (Table 4). The estimates are 20 and 35% higher than in survey $1 / 94$ for Cape and deep water hake respectively and for both species the highest in the time series. The 95% confidence limits give a range of $\pm 14 \%$ on the estimate of the Cape hake and $\pm 22 \%$ of the deep water hake.

Table 4 Southern Region. Estimates of total biomass by surveys, 1 000 tonnes.		
Year/Survey	Cape hake	Deep water hake
$90 / 1$	130	22
$90 / 3$	130	25
$91 / 1$	113	31
$91 / 2$	80	82
$92 / 1$	200	145
$92 / 2$	160	125
$93 / 1$	210	150
$93 / 2$	180	115
$94 / 1$	200	160
$94 / 2$	240	215

Figure 6 Orange River to Francis Bay. Distribution of Cape hake. Empty squares indicate stations where Cape hake was not caught.

Figure 7 Orange River to St. Francis Bay. Distribution of deep water hake. Empty squares indicate stations where deep water hake was not caught.

The size compositions of the Cape hake from pooled samples weighted by catch rates are shown for each region by depth ranges in Annex I. There is as usual an increase of size with depth. A length frequency analysis, to identify the cohorts in the stock, was performed in the same way as during the three previous surveys. The results are shown in Table 5.

Table 5 Southern Region. Cape hake. Estimated age-cohorts from optimized length distributions. Year class Mean length Sigma Fraction of all fish							Population million N	Biomass 1000 t
1993	22.0	1.50	0.11	85	5			
1992	27.0	2.35	0.30	232	30			
1991	32.5	3.30	0.42	237	75			
1990	42.0	3.70	0.11	95	50			
older			0.07	45	80			

The dominating cohorts are the 1992 and 1991 yearclasses which is estimated to 72% of the total number of fish. The fishable part of the Cape hake in the region constitutes 140 mill. fish with a biomass of 130000 tonnes. Since the previous survey the fishable biomass has increased with 20 mill. fish and about 24 thousand tonnes.

The size composition of the deep water hake is shown in Annex I. Results from a length frequency analysis on the deep water hake is shown in Table 6. The non-fishable part of the stock in the region is estimated to about 390 mill. fish with a biomass of 51 thousand tonnes, and about 270 mill. fish with a biomass of 164 thousand tonnes constitutes the fishable biomass.

Table 6	Southern Region. Deep water hake. Estimated age-cohorts from optimized length distributions.				
Year class	Mean length	Sigma	Fraction of all fish	Population million N	Biomass 1000 t
1993	23.5	2.0	0.26	168	14
1992	28.4	2.5	0.28	189	29
1991	38.0	3.0	0.25	178	66
older			0.21	125	106

3.3 CENTRAL REGION, ST. FRANCIS BAY TO AMBROSE BAY

Table 7 shows the catch composition for the shelf and the slope by main groups. The mean catch rates for hakes on the shelf are only about 50% of those obtained in the January survey this year, while the catch rates in the slope are almost the double. Also for monk the catch rates in the more shallow depth range have decreased considerably, while the rates in the deeper waters are at the same level as in January.

SHELF 100-2							
ST. NO. DEP. Hakes Monk Kingklip Soles Squid Other							
234	163	508.60					38.60
235	227	1383.76					156.02
244	235	3372.12					
245	147	182.70					0.40
246	143	158.40					
247	219	1422.40			1.34	2.56	316.94
248	252	1748.02	4.30			14.80	97.04
257	245	425.64	23.88				4520.40
258	218	884.30	10.82			65.80	3712.40
259	193	1957.44	6.16				1924.52
260	179	544.74	0.70				293.50
261	153	10.20					0.40
262	153	175.20					1.60
263	190	74.40					1.92
272	229	271.02	0.52				2.10
273	145	90.36					6.00
274	139	6.12					
275	160	145.38					6.12
281	224	141.04	0.18		5.14		3.60
282	157	242.40					3.72
283	130						
284	152	52.14					0.78
285	183						
297	212	274.00					1268.00
298	141	259.60					164.78
MEAN		573.20	1.86		0.26	3.33	500.75

SLOPE 260-700m

ST. NO	DEP.	Hakes	Monk	Kingklip	Soles	Squid	Other
236	365	554.56	146.98			34.44	176.84
237	414	348.80	27.48	4.20		26.40	337.34
238	614	615.18	2.92			95.70	576.18
239	693	206.20				61.40	562.60
240	371	1160.40	12.58	2.30		36.80	272.24
241	340	1524.40	19.52	10.70		22.32	126.90
243	272	2534.72				19.60	1159.24
249	268	3028.92	2.88			34.00	550.20
250	275	1201.86	23.70				691.54
251	291	1128.06	12.32				1558.14
252	599	398.20	4.38			52.20	422.64
253	652	172.44	1.80				400.00
254	459	156.40	2.82			14.40	918.70
255	324	771.62	6.28			56.64	333.76
256	274	91.90	3.98			7.00	332.00
264	270	2043.74	5.48		4.60		436.42
265	353	974.80	55.60	3.30		184.80	2271.36
266	422	449.30	19.94			65.28	317.06
267	654	153.90	3.46				415.80
268	597	155.42	4.04				400.00
269	447	226.40	14.98			19.36	483.12
270	319	707.62	25.56				241.92
271	325	569.06	53.56			12.00	105.44
277	461	82.42	17.96	2.68			615.90
278	399	361.72	31.98	4.00		44.60	265.34
279	263	214.56					2.28
280	260	927.21	1.89				544.05
286	278	2500.16					541.84
287	329	1308.50	214.00	0.20	31.40		710.24
288	335	1379.40	22.68	0.62	9.52	23.40	1350.56
289	402	811.50	154.22	10.20		57.12	2089.64
290	497	385.10	243.00			2.04	822.58
291	495	365.50	66.20				853.60
292	541	174.20	44.06				577.24
293	463	251.60	86.42				614.08
294	405	648.94	148.50		0.68		608.70
295	333	528.64	1.08		2.40	2.46	92.46
296	284	168.60					7.80
357	400	263.64	36.58	25.94		2.80	355.00
358	604	160.90				12.30	676.14
359	500	523.30	5.10			20.40	651.90
360	361	193.92	31.02				120.00
361	310	469.10	44.90	0.56	3.22	7.56	144.52
MEAN		718.44	37.21	1. 50	1.21	21.28	575.19

The density index by depth ranges of the two hake species is shown in Table 8. For the Cape hake the density for the depth range $100-250 \mathrm{~m}$ is less than 40% of that obtained in January, while in all the deeper depth ranges the densities are more than doubled compared to the previous survey. The density index on the deep water hake has in the same period increased somewhat in the 250 350 m and $550-650 \mathrm{~m}$ depth ranges, while the index has decreased in the depth ranges from 350 to 550 m .

Table 8 Central Region. Depth distribution of the two hake species. Mean densities in tonnes $/ \mathrm{nm}^{2}$ and mean catch rates $\mathrm{kg} /$ hour.					
	$100-250 \mathrm{~m}$	$250-350 \mathrm{~m}$	$350-450 \mathrm{~m}$	450-550m	550-650m
Cape hake Density Catch rate	$\begin{array}{r} 12.4 \\ 370 \end{array}$	$\begin{array}{r} 26.2 \\ 780 \end{array}$	$\begin{array}{r} 11.7 \\ 350 \end{array}$	$\begin{array}{r} 0.7 \\ 20 \end{array}$	
Deep w. hake Density Catch rate		$\begin{array}{r} 2.3 \\ 70 \end{array}$	$\begin{array}{r} 4.9 \\ 145 \end{array}$	$\begin{array}{r} 8.6 \\ 260 \end{array}$	$\begin{array}{r} 12.0 \\ 360 \end{array}$
No. of hauls	24	19	11	7	4

The biomass estimate of Cape hake for the central region based on post stratification is 160 thousand tonnes (Table 9.) This represents a further reduction, 65 thousand tonnes or almost 30% since survey $1 / 94$. The estimate on the deep water hake is 30 thousand tonnes, the same as in the previous survey. The 95% confidence limits on the estimates are $\pm 15 \%$ on the Cape hake and $\pm 18 \%$ on the deep water hake.

Table 9Central Region. Estimates of total biomass by surveys, 1000 tonnes.		
Year/Survey	Cape hake	Deep water hake
$90 / 1$	180	4
$90 / 3$	219	6
$91 / 1$	150	6
$91 / 2$	302	13
$92 / 1$	261	15
$92 / 2$	542	15
$93 / 1$	280	12
$93 / 2$	280	20
$94 / 1$	225	30
$94 / 2$	160	30

Figure 8 shows the distribution of Cape hake over this region. This has the same main features as that of previous surveys, with high concentrations of fish forming bands $10-15$ NM thick, but their depth position varying between surveys. In survey $1 / 93$ the high concentrations were found from 20NM off Walvis Bay and in survey $2 / 93$ and $1 / 94$ it was about 30NM further offshore. In the present survey high concentrations were found at about the same distance from the coast, but they covered a smaller area. It is highly probable that the hydrographic conditions are forming a strong barrier for the fish distribution.

Figure 8 St. Francis Bay to Ambrose Bay. Distribution of Cape hake. Empty squares indicate stations where Cape hake was not caught.

Figure 9 St. Francis Bay to Ambrose Bay. Distribution of deep water hake. Empty squares indicate stations where Cape hake was not caught.

The results from a cohort analysis on the length distribution are shown in Table 10.

Table 10	Central Region. Cape hake. Estimated age-cohorts from optimized length distributions.				
Year class	Mean length	Sigma	Fraction of all fish	Population million N	Biomass 1000 t
1992	24.1	2.6	0.83	830	77
1991	30.5	2.7	0.11	101	19
older			0.06	64	64

The 1992 yearclass dominates the fish population with 83% of the number of fish, followed by the 1991 yearclass with 11%. The fishable part of the population is 67 mill. fish and 65000 tonnes, an increase of 15000 tonnes compared to the previous survey. The non-fishable biomass is estimated to 927 mill. fish with a biomass of 95000 tonnes, which is only half of what was estimated in January this year and brings the recruitment potential to the fishable biomass down towards half of the normal.

The more narrow distribution of deep water hake is presented in Fig. 9. Results from the length frequency analysis for the deep water hake is shown in Table 11. In this population the nonfishable biomass makes up 53% of the number of fish while the remaining 47% are fish of size bigger than 35 cm and are estimated to 36 mill. fish and 22000 tonnes, 4000 tonnes less than in the previous survey.

Table 11 Central Region. Deep water hake. Estimated age-cohorts						
from optimized length distributions.						
Year class	Mean length	Sigma	Fraction of all fish	Population million N	Biomass 1000 t	
1992	28.5	2.0	0.317	24	4	
1991	34.3	2.2	0.29	22	6	
1990	41.0	3.5	0.2	16	7	
1989	51.5	3.5	0.19	15	13	
older			0.003	-	-	

3.4 NORTHERN REGION, AMBROSE BAY TO CUNENE RIVER

Table 12 shows the catch rates by main groups for the shelf and slope separately. The mean rate for hakes has increased by approximately 25% in the shallower zone and in the deeper zone the rate is more than doubled compared to survey $1 / 94$. The catch rates for monk in the slope is about 30% lower than in previous survey, but still much higher than in previous years.

Table 12 Northern Region. Catch rates by main groups in swept area bottom trawl hails, kg/hour.

SHELE 100-259m

ST. NO.	DEP.	Hakes	Monk	Dentex	Horse mok.	Squid	Other
299	160	30.9			1.9		
300	233	78.8					0.0
309	259	37.4		1.0	8.6		1. 1
313	178	125.4		69.8	1728.0	31.5	19.4
314	237	456.2	11.7	1170.0	18.3		256.6
318	242	303.0		36.7	17.3		153.0
319	195	560.1	80.4	5910.0	2202.0		471.0
322	212	456.4	15.4	825.3	1143.5		363.5
326	228	2406.9		376.3	793.1		804.0
327	186	637.8		131.1	2990.2		476.5
332	117	447.6	17.4	594.6	575.4		257.1
344	240	234.8	2.4	1458.0	1414.8		64.8
345	165	310.1			1755.0		46.0
351	197	307.3	8.2	17.4	906.0		5.8
MEAN		456.6	9.7	756.4	968.1	2.3	208.5

SHELF 260-650m

ST. NO.	DEP.	Hakes	Monk	Dentex	Horse mck.	Squid	Other
301	345	928.7	168.3	9.6		15.3	831.4
302	442	147.8	16.2			21.1	1404.6
303	528	169.9	20.6		1. 8	11.5	657.9
304	587	119.0	29.2		11.4	50.7	617.4
305	464	136.2	34.2			15.5	701.3
306	399	243.9	108.6			33.2	345.2
307	343	351.8	30.9	44.2	0.7	13.5	198.0
308	302	134.5	38.2		2.6	9.4	89.6
310	307	183.0	161.2	47.1	7. 6	5.8	227.0
311	367	1017.3	121.4		15.1	4.9	280.1
312	453	337.6	22.7		0.4	8.6	418.7
315	330	3404.1	2.7	1325.6	10.7		1031.8
316	413	377.4	11.2				19.1
317	354	497.4	12.7				19.5
320	472	486.1	82.2			84.0	1846.0
321	588	422.8	33.1			0.6	1368.2
323	303	3097.6	20.8	532.4	145.2		1054.2
324	404	4705.9	126.1	26.7			1247.2
325	345	2735.5		463.3	218.2		1845.5
328	372	1728.0	8.4			98.8	2184.2
329	499	844.0	25.1				2188.9
330	524	396.8	129.8				718.1
331	498	514.0	45.4			50.8	2476.4
333	290	2632.2	22.3	327.6	179.8		1224.0
334	374	2756.5	47.0				1074.5
335	443	762.1	54.3			16.3	508.9
336	602	130.2	10.1				1199.1
337	501	222.5	95.8				781.7
338	593	182.8	74.7				617.5
339	499	1173.0	34.0			12.6	382.3
340	394	846.6	28.0			15.1	316.7
341	308	1235.7	35.7	15.7	41.7	3.3	789.4
342	285	466.1	27.6	148.5	312.0	7.1	308.9
343	289	256.3		182.5	109.4		35.9
346	479	64.8	38.2				755.4
347	393	409.7	23.6			18.4	336.8
348	304	500.0	15.0		59.2	28.0	126.6
349	294	380.6	0.7	3.5	84.0	22.9	16.8
350	269	500.9	2.2	206.4	49.4	7.2	66.7
352	303	463.6	47.5	63.4	56.4	16.0	91.9
353	325	886.8	29.0	2.0	29.1	25.8	161.1
354	349	450.9	27.6		42.9	59.8	270.3
355	429	771.4	65.8			4.9	496.5
356	501	119.3	50.2			28.6	843.9
MEAN		868.0	45.0	77.2	31.3	15.7	731.3

Figure 10 shows the distribution of Cape hake in the northern region by levels of density calculated from the catch rates and with corrections for fish in mid-water. The pattern of distribution is similar to that found previously in this region, with concentrations of high density in deeper waters extending northwards to the Cunene River.

Figure 10 Ambrose Bay to Cunene River. Distribution of Cape hake. Empty squares indicate stations where deep water hake was not caught.

Figure 11 Ambrose Bay to Cunene River. Distribution of deep water hake. Empty squares indicate stations where deep water hake was not caught.

The depth distribution of the two hake species based on catch rates converted to densities are shown in Table 13. For Cape hake there was an increase in densities in all depth ranges compared to survey 94/1. The densities of deep water hake decreased somewhat in 350-450 m and 550650 m but on the other hand increased in $450-550 \mathrm{~m}$. This can be explained by small differences in distribution and area coverage between the two surveys.

Table 13	Northern Region. Depth distribution of the two hake species. Mean densities in tonnes $/ \mathrm{nm}^{2}$ and mean catch rates $\mathrm{kg} / \mathrm{hour}$.				
	$100-250 \mathrm{~m}$	$250-350 \mathrm{~m}$	$350-450 \mathrm{~m}$	$450-550 \mathrm{~m}$	$550-650 \mathrm{~m}$
Cape hake					
Density					
Catch rate	14.7	33.1	35.4	3.9	1.3
Deep w. hake	440	990	1060	120	40
Density					
Catch rate			0.2	2.1	9.1
No. of hauls	13	18	12	11	5.8

Biomass estimates give a total of 130000 tonnes of Cape hake and 14000 tonnes of deep water hake (Table 14). For the Cape hake this represents an increase of 40000 tonnes since the last survey in January 1994. The deep water hake on the other hand shows a decrease from 20 to 14 thousand tonnes, but the estimate is still more than the double of that obtained in April - May 1993. The 95% confidence limits on the estimates are $\pm 12 \%$ on the Cape hake and $\pm 47 \%$ on the deep water hake.

Table 14 Northern Region. Estimates of total biomass by surveys, 1000 tonnes. Year/Survey Cape hake		
Deep water hake		
$90 / 1$	180	
$90 / 3$	$105 \quad *$	
$91 / 1$	200	
$91 / 2$	140	2
$92 / 1$	185	4
$92 / 2$	190	8
$93 / 1$	150	4
$93 / 2$	110	6
$94 / 1$	90	20
$94 / 2$	130	14
* + hake in the mid-water.		

The size compositions of the two hake species are shown in Annex I. The results of an analysis done on the pooled length frequency distribution on Cape hake in the northern region is shown in Table 15. The young part of the population with fish three years and younger makes up 69% of the number of fish, or 240 million fish with a biomass of 39 thousand tonnes. The so called 'fishable biomass', representing fish of 36 cm and larger, constitutes 135 mill. fish with a biomass of 102000 tonnes.

Table 15	Northern Region. Cape hake. Estimated age-cohorts from optimized length distributions.					
Year class	Mean length	Sigma	Fraction of all fish	Population million N	Biomass 1000 t	
1992	25.9	2.7	0.50	175	20	
1991	35.0	3.5	0.19	65	19	
1990	43.0	3.5	0.13	47	24	
older			0.18	60	67	

A similar analysis on deep water hake (Table 16), shows that only 29%, or 7 million fish with a biomass of 1600 tonnes, is young fish of age 3 years or less. The fishable biomass is 13000 tonnes.

Table 16Northern Region. Deep water hake. Estimated age-cohorts from optimized length distributions.						
Year class	Mean length	Sigma	Fraction of all fish	Population million N	Biomass 1000 t	
1992	28.1	2.0	0.11	3	0.4	
1991	35.1	2.5	0.18	4	1.2	
1990	42.0	3.2	0.38	10	4.8	
1989	51.0	3.0	0.33	9	7.6	

CHAPTER 4 CONSIDERATIONS ON THE SURVEY RESULTS

Survey effort

The present survey is the 10th in a series started in early 1990, covering the distribution of the hake stocks over the whole Namibian shelf. Figure 12 shows the effort spent in these investigations. The effort of the present survey is the highest both in number of trawl stations and of length samples.
a)

b)

Figure 12
Hake survey effort 1990-94. a) Number of trawl stations by regions; b) Number of length frequency samples by regions; c) Mean number of fish in length sample.

Mid-water behaviour of the hake can cause problems for the trawl survey methodology. However, improved acoustic technology has made it possible to establish a technique that can reduce the effect of this behaviour on the estimates. In the last four surveys (1993 to 1994) the pelagic behaviour may have caused some underestimate in the biomass, especially in the Northern Region.

Catch per unit effort

A summary of the estimates of the mean density of the hakes by depth strata is shown in Figure 13. For the Cape hake, the densities in the shallow range $100-250 \mathrm{~m}$ mainly reflect the strength of the young fish, 2-3 years of age, that inhabit this zone. Since the previous survey in February, the Southern Region shows a considerable decrease in the density of young fish from 11 to 6 tonnes $/ \mathrm{nm}^{2}$, the Central Region shows an alarming reduction from 33 to $12.4 \mathrm{t} / \mathrm{nm}^{2}$, while the Northern Region had an insignificant increase from 12.4 to $14.7 \mathrm{t} / \mathrm{nm}^{2}$. The drastic reduction in the Central Region will be further discussed below. The densities in the deeper zones mainly reflect the state of the fishable part of the hake stock. In the Southern Region these densities increased for both species, and most pronounced for deep water hake.

Biomass estimates

Table 19 shows a summary of the biomass estimates for the two hake stocks by regions and surveys. The estimated total biomass of hakes has increased slightly since May 1993 from 740 to 790 thousand tonnes. This increase results from higher estimates of both species in the Southern Region and of Cape hake in the Northern Region. In the Central Region the biomass of Cape hake has continued to decline and is now back to the level of 1990. The sudden drop in the biomass of Cape hake in the Central Region from 225 thousand tonnes to 160 thousand tonnes applies mainly to the young fish that will recruit to the fishery in the next 2-3 years. The cause for this reduction is not known, but the sudden character of the phenomenon indicates an environmental incidence causing mass mortalities, similar to what was observed in early 1993. The total country estimates on fishable biomass and recruits have also been summarized graphically in Figure 14. The dominant feature is the reduction in the fishable biomass of the Cape hake from 390 to 300 thousand tonnes during the last two years. This reduction has mainly taken place in the Central and partly the Northern Region (-105 and -40 thousand tonnes respectively), while in the Southern Region the biomass is 50 thousand tonnes higher than in survey $2 / 92$ (Table 19).

Northern region Cape hake

Central region
Cape hake

Southern region
Cape hake

Northern region

 Deep waier hake

Central region
Deep water hake

Southern region
Deep water hake

Figure 13 Estimated mean densities in depth strata by surveys. Mean densities in tonnes $/ \mathrm{nm}^{2}$.

[^0]

Figure 14
Trends in biomass estimates: a) Cape hake, 'fishable stock', b) deep water hake, 'fishable' stock, c) recruits ('non-fishable' biomass) and d) total hake in Namibia. Thousand tonnes.

Figure 15 Relative regional share of fishable biomass of Cape hake 1991-94.

Geographic shift in the fishable biomass

Figure 13 shows the development of the relative share of the fishable biomass of Cape hake in the regions for the last three years. The figure demonstrates that the Southern Region, which in October 1991 only represented a 13% share of the biomass, in the last survey had increased to 44%. In the same period the biomass in the Central Region was reduced from 44 to 22% and in the north from 43 to 34%.

Recruitment potential

The recruitment to the stock of Cape hake can be estimated from the numerical abundance of the two year old fish. The estimates for the 1992 yearclass based on the current survey data are shown in Table 20 together with previous observations. A 'normal' recruitment level after two years seems to be around 2 billion fish ± 200 million (Table 20). The 1992 yearclass fell within this range on the previous survey, but is now reduced to 1.25 billion, well below the average level. The reduction is mainly located in the Central Region, likely caused by environmental anomalies as discussed above. The further life history of the 1992 yearclass should be followed closely as it will be the main component determining the size of the fishable biomass in 1996.

Table 20	Estimates of strength of recent yearclasses of Cape hake. Cohort population numbers at about two years of age for the groups assumed to have been spawned in 1988, 1989, 1990, 1991 and 1992. Millions of fish.								
Yearclass	1988	1989	1990	1990	1991	1991	1991	1992	1992
Southern region	980	100	160	300	990	670	390	250	230
Central region	1320	170	1710	1620	3500	1230	1370	1880	830
Northern region	10	10	20	240	440	270	130	70	175
Total	2310	280	1890	2160	4930	2170	1890	2200	1235
Survey/Year	1/90	1/91	2/91	1/92	2/92	1/93	2/93	1/94	2/94

Management considerations

A management practice that would ensure a more balanced harvest on the two hake species is strongly recommended. Administratively, the solution would perhaps be to direct the fisheries by regions. Estimates of the fishable hake biomass in this report are therefore presented by species and regions to allow for this management option, if chosen.

The rebuilding of the Namibian hake stocks since independence has followed a simple but effective strategy where after strict regulations on foreign fishing, part of the surplus production was set off to build up the standing stock of hake and the rest was mainly reserved to a growing national fishing industry. The rapid recovery of the hake stocks during the first years also allowed a gradual increase in the annual hake quotas as follows:

1991:	80 thousand tonnes
1992:	100 thousand tonnes
1993:	120 thousand tonnes
1994:	150 thousand tonnes

The first three years' quota were linked to an increasing harvestable biomass, while the most recent raise could seem more based on expectations that the stock should naturally and gradually increase towards its full potential. The findings in this report show that the most recent increase in the quota was not consistent with the trends observed through the survey investigations, that had already in the past year shown a stagnating or even declining stock biomass.

Historical catch records higher than 500 thousand tonnes indicate that the hake stocks have not yet reached their full potential in Namibian waters. Why is then the fishable biomass
levelling out and why are there signs of overfishing when the annual yields still are moderate? To understand this, one should keep in mind that most fish stocks in dynamic ecosystems do not grow gradually even if the conditions for expansion are favourable. Instead, the growth occurs often in uneven steps and leaps not seldom in orders of magnitude, dependent on the reproduction success of the stock. Table 20 has shown that the recruitment, measured at two years of age, has been fairly stable around 2 billion fish since independence, with one exception. The 1991 yearclass had a very promising level at 1.5 years of age, but was decimated drastically down to a 'normal' level during the following 3 months.

Attempts have been made to compare the recruitment indices from the Nansen surveys with similar data from the ICSEAF VPA studies for the yearclasses 1968-1985 and with recruitment indices from Spanish trawl surveys for the yearclasses 1981-86, (Appendix XX). To make the indices comparable several corrections had to be applied which make the results, compiled in Figure 16, indicative only.

Billion recruits

Figure 16 Recruitment indices on Cape hake yearclasses 1968-92. Compiled from ICSEAF VPA studies, Spanish trawl surveys and the Nansen surveys. See Appendix XX for details.

The figure indicates several important features:

- The recruitment process is extremely dynamic with yearclass strengths between 5.9 billion and 0.3 billion fish.
- The recruitment in the period since independence (yearclass 1988 and after) has been moderate with most groups around 2 billion fish.
- High recruitment, defined as more than 3 billion fish occurred in the periods 1968-70, 1973-74 and 1982-83 and these were the fundament for the following rich fishery.

The 1991 yearclass was estimated to 4.9 billion fish at the stage of 1.5 years, and thus set out to be a very strong yearclass. Unfortunately it was drastically reduced during the following months as already pointed out. With reference to the recent development of the fishable biomass, discussed above, one may therefore conclude that with the present recruitment level sustaining around 2 billion fish, the present effort in the fishery is in balance or perhaps even somewhat overexploiting the production capacity of the hake stocks. Further expansion of the fishery should probably await until at least one strong yearclass is recruited and firmly established at 2 years of age.

Other considerations

The management of the Namibian hake resources is at present based to a large degree on the results from the trawl surveys. The fishery data, stored in a UNIX data base, are not yet available for the urgent needed research. The main obstacle seems to be the transfer of the fish log forms into a user friendly database or statistical package. It is recommended that until the UNIX system is fully developed, to establish a simple PC based database. Past experience from several research institutions show that UNIX systems take a long time to develop, and the user threshold, before they are useful for the scientists, is usually high.

Annex I Size composition of main stocks

Merluccius capensis
SOUTHERN REGION 50-259m

Merluccius capensis
SOUTHERN REGION 260-650m

Merluccius capensis
SOUTHERN REGION Total

Merluccius capensis
CENTRAL REGION $100-259 \mathrm{~m}$

Merluccius capensis
CENTRAL REGION 260-700m

Merluccius capensis
CENTRAL REGION Total

Merluccius capensis NORTHERN REGION 100-259m

Merluccius capensis NORTHERN REGION 260-650m

Merluccius capensis NORTHERN REGION Total

Merluccius paradoxus NORTHERN REGION Total

Merluccius paradoxus
CENTRAL REGION Total

Merluccius paradoxus
SOUTHERN REGION Total

Annex II The size composition of the hake stocks split into length cohorts through optimizing techniques

CAPE HAKE

NORTHERN REGION

The length frequency distribution with the estimated cohorts.

The length frequency distribution with the resultant distribution explained by the estimated cohorts.

NORTHERN REGION

The length frequency distribution with the estimated cohorts.

The length frequency distribution with the resultant distribution explained by the estimated cohorts.

Annex III Records of fishing stations

species
Merluccius capensis. female Merluccius capensis, male Squilla acuelata calmani Genypterus capensis
Merluccius capensis, juveniles
Austroglossus microlepis
Callorhinchus capensis
Jasus lalandii
Trachurus capensis
Total

species

Merluccius paradoxus, female
Merluccius paradoxus, male
Lophius vomerinus
Holohalaelurus regani
Malacocephalus laevis
Helicolenus dactylopterus
Helicolenus dactylopte
Genypterus capensis
octopus vulgaris
Squalus megalops
Todarodes sagittatus
Trachurus capensis
Trachurus capensis
Hoplostethus mediterraneus
zenopsis conchifer
myctophidae
Cynoglossus capensis
Callinectes
Callinectes sp
Epigonus denticulatus
Tripterophycis gilchristi
myxine capensis
Notopogon macrosolen
Rossia sp
Total

CATCh/HOUR		8 OF tot c	SAMP
weight	numbers		
266.00	520	40.49	30
166.40	312	25.33	29
67.80	1204	1032	
33.30	12	507	27
27.72	240	4.22	
25.84	36	393	
18.88	148	2.87	
14.60	10	222	28
14.56	2	222	
10.96	日	1.67	
3.84	4	0.58	
2.68	12	0.41	
1.08	16	0. 16	
0.68	4	0.10	
0.64	56	0.10	
0.60	12	0.09	
0.36	20	0.05	
0.36	64	0.05	
0.32	54	0.05	
0.12	20	0.02	
0.12	4	0.02	
0.08	4	0.01	
0.04	4	0.01	
656.98		9999	

656.9 B
-999


```
\(\begin{array}{llllll}\text { TIME } & : 15 ; 29: 00 & 15: 59: 00 & 30 & \text { (min) } & \begin{array}{l}\text { Purpose code: } \\ \text { LOG } \\ : 1480: 00\end{array} \\ \text { Area code } & 1482.30 & 1.50 & \end{array}\)
\(\begin{array}{lrrll}\text { LOG : } 1480.00 & 1482.30 & 1.50 & \text { Area code } \\ \text { FDEPTH: } & 402 & 397 & & \text { Gearcond code: } \\ \text { BDEPTH: } & 402 & 397 & & \text { validity code: }\end{array}\)
ing dir: \(360^{\circ}\) wire out: 1300 m speed: \(33 \mathrm{kn} * 10\)
    Sorted: 261 kg Total catch: 1148.13 CATCH/HOUR: 2296.26
```

species
Merluccius paradoxus, female
Merluccius paradoxus. male
Merluccius capensis, female
Genypterus capensis
Coelorinchus braueri
Merluccius capensis, male
Helicolenus dactylopterus
Lophius vonerinus
Lepidopus caudatus
Todarodes sagittatus
Malacocephalus laevis
Sepia sp
Epigonus denticulatus
Yarrella blackfordi
Paracallionymus costatus
CRABS

Total

CATCH/HOUR		- of tor C	SAMP
weight	numbers		
1056.00	1492	4599	38
779.80	1114	3396	39
170.98	56	7.45	36
123.80	86	5.39	40
71.50	1610	3.11	
45.10	12	1.96	37
15.92	78	0.69	
9.20	4	0.40	41
8.46	12	0.37	
6.24	12	0.27	
5,34	22	0.23	
1.66	56	007	
0.88	66	0.04	
0.66	44	0.03	
0.44	66	0.02	
0.10	12.		
2296.08		99.98	

Total

SPECIES
Merluccius paradoxus. female
Merluccius paradoxus, male
Coelorinchus fasciatus
Genypterrs capensis
Helicolenus dactylopterus
Todarodes sagittatus
Merluccius paradoxus, juvenile
Holohalaelurus regan
Epigonus denticulatus
Malacocephalus laevis

Total


```
\(\begin{array}{lrlll}\text { LOG :1544.70 } & 1546.20 & 1.50 & \text { Area code } \\ \text { FOEPTH: } & 550 & 553 & & \text { Gearcond. code: } \\ \text { BDEPTH: } & 550 & 553 & & \text { Validity code: }\end{array}\)
```



```
    Sorted: 158 kg Total catch: 296.92 CATCH/HOUR: 59384
```

species
Merluccius paradoxus, female
Ruvettus pretiosus
Merluccius paradoxus, male
Coelorinchus braueri
Yarrella blackfordi
Selachophidium guentheri
Notacanthus sexspinis
Raja caudaspinosa
Neocytus rhomboidalis
Etmopterus lucifer
Helicolenus dactylopterus
Malacocephalus laevis
Tripterophycis gilchristi
Nezumia sp.
Todarodes sagittatus
Epigonus denticulatus
Total

CATCH/HOUR		OF TOT	S
weight	Sump		
477.40	444	80.39	55
36.50	2	6.15	
29.20	60	4.92	54
22.72	434	3.83	
8.52	734	1.43	
5.48	84	0.92	
3.12	60	0.53	
2.66	2	0.45	
2.24	12	0.38	
2.00	120	0.34	
1.60	8	0.27	
1.08	12	0.18	
0.40	8	0.07	
0.40	12	0.07	
0.36	4	0.06	
0.16	4	0.03	
593.84		-100.02	

rluccius capensis. feral
trumeus whiteheadi
Merluccius capensis, juveniles
Helicolenus dactylopterus
eus capens da
Thyrsites atun
Merluccius capensis, male
grama brama
seyliorhinus c
Raja leopardus
Todarodes sagittatus
ynoglossus capensis
Emmelichthys nitidus
rotal

CATCH/HOUR weight numbers		8 of tot
532.00	2230	60.32
108.40	62	12.29
64.26	672	
45.50	308	5.16
37.10	1204	4.21
25. 76	280	292
15.82	84	1.79
15.80	10	1.79
14.50	10	1.64
13.90	8	1. 58
2.80	14	
2.72	2	0.31
1.68	28	0.19
1.12	14	0.13
0.56	14	0.06
881.92		10000

SAMP

spectes	CATCH	HOUR	- of tot. C	SAMP
Merluccius capensis, female	weight 108.10	numbers	25.32	62
merluccius capensis, juveniles	80.00	5442	18.74	67
Thyrsites atun	69.60	82	16.30	64
Lepidopus caudatus	38.80	624	9.09	
Merluccius capensis, male	35.10	32	8.22	63
Chelidonichthys capensis	19.68	40	4.61	
Trachurus capensis	15.20	56	3.56	66
Etrumeus whiteheadi	14.16	136	3.32	68
congiopodus torvus	13.28	8	3.11	
Helicolenus dactylopterus	11. 36	112	2.66	
Todarodes sagittatus	7.84	32	1.84	
Scyliorhinus capensis	7.36	24	1.72	
zeus capensis	2.96	16	0.69	
Lophius vomerinus	1.40	2	0.33	65
Sepia australis	1.28	120	0. 30	
cynoglossus capensis	0.80	16	0.19	
Total	426.92		10000	

spectes
Merluccius capensis. male
Merluccius capensis, male
rhyrsites atun
Galeorhinus galeus
scyliorhinus capensi
enypterus capensis
rachurus capensis
ophius vomer
cynoglossus capensis
Helicolenus dactylopterus
heja pullopuncta
Raja leopardus
Merluccins paradoxus, female
hepidopus caudatus
tepidopus caudatus
shrimps, small, non con
Congiopodus
NEMICHTHYIDAE
NEMICHTHYIDAE
Merluccius capensis, juveniles
octopus sp
Total

Catch/HOUR	
weight	numbers
49.60	44
26.30	40
24.00	26
22.50	46
10.62	42
4.66	14
4.38	18
4.30	26
3.70	36
3.40	36
3.24	66
2.56	6
2.08	2
2.02	2
128	4
1.18	18
1.16	176
1.14	242
0.82	8
0.66	32
0.66	72
0.52	10
0.32	2

28.99	70
15.37	69
14.03	71
13.15	
6.21	
2.72	73
2.56	72
2.51	75
2.16	
1.99	
1.89	
1.50	
1.22	
1.18	
0.75	76
0.69	
0.68	
0.67	
0.48	
0.39	
0.39	74
0.30	
0.19	


```
\(\begin{array}{ll}\text { start stop duration } & \text { Long } \\ \text { E } & 1534\end{array}\)
\(\begin{array}{llllll}\text { THME } & 06: 33: 00 & 07: 03: 00 \quad 30 & \text { (min) } & \text { Purpose code: } \\ \text { LOG } & 1638.40 & 1640: 20 \quad 180 & \text { Area code }\end{array}\)
\(\begin{array}{lrrl}\text { LOG }=1638.40 & 1640.20 & 180 & \text { Area code } \\ \text { FPEPTH: } & 152 & 152 & \text { Gearcond Code: } \\ \text { BDEPTH: } & 152 & 152 & \text { validity code }\end{array}\)
Towing dir: \({ }^{\text {P }}\) Wire out: 500 m speed: \(31 \mathrm{kn} * 10\)
    Sorted: 268 kg Total catch: 750.42 CATCH/HOUR: 1500.84
```

species
derluccius capensis, juvenile
Merluccius capensis, female
Thyrsites atun
chelidonichthys capensis
erluccius capensis. male
sepia australis
Etrumeus whiteheadi
Merluccius paradoxus. female
ferluccius paradoxus. female
rachurus capensis
Lepidopus caudatus
enypterus capensis
Merluccius capensis. male
zeus capensis
Helicolenus dactylopterus
Merluccius paradoxus. male
Genypterus capensis
Total

CATCH/HOUR			
weicht	numbers	OF TOT. C	SAMP
721.80	60420	48.09	84
225.70	582	15.04	78
153.00	40	10.19	81
145.44	432	9.69	
84.30	220	5.62	77
52.56	612	3.50	83
28.80	188	1.92	
22.68	288	1.51	87
17.38	144	1.16	86
10.50	72	0.70	80
9.00	36	0.60	
7.20	72	0.48	85
6.84	324	0.46	
5.36	2	0.36	
2.52	36	0.17	82
2.16	36	0.14	
2.16	216	0.14	
1.44	36	0.10	
1.02	88	0.07	79
0.52	36	0.03	
0.36	36	0.02	
1500.74		99.99	

Catch/Hour
B OF TOT. C SAMP
erluccius capensis, juveniles hyrsites atun
erluccius apensis. erluccius capensis, temale epia australis

Merluccius paradoxus. female
rrachurus capensis.
epidopus caudatus
Merluccius capensis, male
paracallionymus costatus enypterus capensis

Total

species
Merluccius capensis, female Merluccius capensis, juve Trachurus capensis
zeus capensis
Chelidonichthys capens
Chelidonichthys capens
Raja leopardus
Etrumeus whitehead
Merluccius paradoxus, female
Squalus megalops
Brama bram
Lepidopus caudatus
Lophius vomerinus
Merluccius paradoxus, male
Congiopodus spinifer
Helicolenus dactylopterus
Paracallionymus costatus
Sepia australis
cynoglossus capensis
Sufflogobius bibarbatus
Total

1373.40
species
Merluccius capensis, female
Merluccius parado Merluccius paradoxus, female Merluccius capensis. juveniles sepia australis Merluccius capensis. Holohalaelurus regani Merluccius capensis. ma Todarodes sagittatus Lophius vomerinus Paracallionymus costatus Merluccius paradoxus. male Merluccius capensis, male Todaropsis eblanae Chelidonichthys queketti Etrumeus whiteheadi Genypterus capensis Zeus capensis
Helicolenus dactylopterus Total

$\begin{array}{lrllll}\text { TIME }: 17: 30: 00 & \text { 18:00:00 } & 30 & \text { (min) } & \text { Purpose code: } \\ \text { LOG } & 1729.30 & 1731.20 & 1.90 & & \text { Area code } \\ \text { FDEPTH: } & 182 & 180 & & \text { Gearcond code : }\end{array}$

Sorted: 134 kg Total catch: 584.08 CATCH/HOUR: 1168.16

CATCH/HOUR			
weight	numbers	OF TOT. C	SAMP
507.00	1710	43.40	113
167.40	104	14.33	107
136.80	1680	11.71	112
94.20	8390	8.06	110
45.30	3840	3.88	
39.30	570	3.36	
36.60	540	3.13	109
31.80	120	2.72	
23.90	26	2.05	106
14.70	30	1.26	
11.40	180	0.98	
11.20	10	0.96	1.04
8.40	1860	0.72	
8.10	150	0.69	111
7.50	180	0.64	108
6.30	30	0.54	
6.00	120	0.51	
3.90	30	0.33	
3.00	30	0.26	
2.96	2	0.25	105
1.80	30	0.15	
0.60	120	0.05	
1168.16		99.98	

species
erluccius paradoxus femal
Trachyrincus scabrus
Todarodes sagittatus
Etmopterus pusillus
elachophidium quentheri
Nezumia sp.
Aristeus varidens
Neocyttus rhonboidalis
Trachurus capensis
tmopterus lucife
Notacanthus sexspinis
ASTRONESTHIDAE
Hoplostethus atlanticus Hydrolagus sp.

Total

species
Deepwater fish mixture
Merluccius paradoxus. female Total

CATC		Of tot
weight		
60.00		62.76
35.60	28	37.24
95.60		100.00

species
Merluccius capensis, female Merluccius capensis, juveniles Galeorhinus galeus Chelidonicht hys queketti Lophius vomerinus
Etrumeus whiteheadi
Trigla lyra
Trachurus capens is
Merluccius paradoxus, male
zeus capensis scyliorhinus capensis
Lepidopus caudatus
sepia austrailis
Squalus megaiops
Helicolenus dactylopterus
Cynoglossus capensis
Todaropsis eblanae
Paracallionymus costatus Omnastrephes pteropus
Ennelichthys nitidus NEMICHTHYIDAE squilla acuelata calmani total
\square97
103
100

Catch/HOUR OF TOT

species
Merluccius paradoxus, female
Merluccius paradoxus, male
Ruvettus pretiosus
Genypterus capensis
Helicolenus dactylopterus
Todarodes sagittatus
Coellorinchus fasciatus
Photichthys argenteus
Maurolicus muelleri

CATCH/HOUR			
weight	numbers	OF TOT C	SAMP
1328.00	1184	85.04	118
79.20	108	5.07	117
58.80	6	3.77	116
30.90	12	1.98	116
29.40	100	188	
20.40	42	1.31	
9.20	100	0.59	
4.90	350	0.31	
0.80	334	0.05	
1561.60		100.00	

$\begin{array}{lrrll}\text { LOG }: 1905: 60 & 1906.90 & 1.30 & \text { Area code } \\ \text { FDEPR: } & 535 & 545 & \text { Gearcond.code } \\ \text { BDEPTH: } & 535 & 545 & & \text { Validity code }\end{array}$
Towing dir: 30° wire out: 1400 m Speed: $24 \mathrm{kn} * 10$
Sorted: 174 Kg Total catch: 303.70 CATCH/HOUR: 607.40
species
Merluccius paradoxus, female
Merluccius paradoxus, fema
Merluccius paradoxus, male Merluccius paradoxus, Notacanthus sexspinis CONGRIDAE
Todarodes sagittatus
Galeus polli Etmopterus lucifer Photichthys argenteus Coelorinchus braueri MXXINIDAE
MXCTOPHIDAE OPHICHTHIDAE

Total

species
Trachyrincus scabrus
Merluccius paradoxus, temale
Neocyttus rhomboidalis
Etmopterus pusillus
Nezumia sp,
Yarrella blackfordi
Yarrella blackfordi
Scomberesox saurus
Scomberesox saurus
Aristeus varidens
Selachophidium guentheri
Phot ichthys argenteus
OPHICHTHIDAE
Total

CATCH/HOUR weight numbers		rot	SAMP
94.20	590	27.92	
69.20	52	20.51	138
63.60	216	18.85	
4400	2	13.04	
36.00	36	10.67	
16.20	324	4.80	
6.60	288	1.96	
3.60	12	1.07	
2.40	420	0.71	
1. 20	12	0.36	
0.12	24	0.04	
0.12	12	0.04	
0.02	24	0.01	
337.26		99.98	

SPECIES	CATCH/HOUR		8 OF TOT	SAMP
	weight	number		
Meriuccius paradoxus. female	77.50	82	36.54	140
Krill	39.70		18.72	
Coelorinchus braueri	18.90	388	8.91	
Merluccius paradoxus, male	13.00	16	6.13	139
Bathyraja smithii	12.76	2	6.02	
Deania profundorum	9.20	12	4.34	
Neocyttus rhomboidalis	8.68	28	4.09	
Coelorinchus fasciatus	7.56	80	3.56	
Malacocephalus laevis	5.38	48	2.54	
Notacanthus sexspinis	4.54	66	2.14	
Galeus polli	3.82	34	180	
Todarodes sagittatus	1.72	4	0.81	
Photichthys argenteus	1.36	88	0.64	
Deania calcea	124	2	0.58	
Nezumia sp.	1.24	48	0. 58	
Helicolenus dactylopterus	1.08	6	0.51	
Ebinania costaecanarie	0.96	2	0.45	
Aristeus varidens	0.82	62	0.39	
Scopelosaurus meadi	0.68	14	0.32	
Etmopterus lucifer	0.58	34	0.27	
Yarrella blackfordi	0.40	34	O. 19	
Photonectes braueri	0.36	14	0.17	
Neoscopelus macrolepidotus	0.32	8	0.15	
Raja sp.	0.14	4	0.07	
Shrimps, small, non cormm	0.08	14	0.04	
myctophidae	0.08	6	0.04	
Total	212.10		100.00	


```
\(\begin{array}{llll}\text { FDEPTH: } & 255 & 268 & \text { Gearcond code } \\ \text { BDEPTH: } & 255 & 260 & \text { Validity code }\end{array}\)
Sorted: 132 kg Total catch: 1310.66 CATCH/HOUR: 2621.32
```

spectes
Merluccius capensis, juveniles
Merluccius capensis, male
Merluccius capensis. female
PHOTICHTHYIDAE
Brama brama
Genypterus capensi
Coelorinchus fasciatus
Scomber japonicus
rodarops is eblanae
Lepidopus caudat
rotal

CATCH/HOUR			OF TOT C
weight	SAMP		
1645.00	89616	62.75	146
367.50	1716	14.02	145
285.20	1330	10.88	144
190.40	39666	7.26	
74.90	66	2.86	
43.00	2	1.64	
5.50	12	0.21	148
4.20	280	0.16	
3.86	2	0.15	149
0.70	106	0.03	
0.70	36	0.03	
0.36	36	0.01	
2621.32		100.00	

species
Merluccius capensis
Merluccius capensis, male
Merluccius capensis, male
Merluccius paradoxus, female
MYCTOPHDAE
Merluccius capensis, juveniles
Todarodes sagittatus
Todarodes sagittatus
Coelorinchus fasciatus
Mustelus palumbes
Merluccius paradoxus, juvenile
Lophius vomerinus
Merluccius paradoxus, male
sufflogobius bibarbaticher
Todarops is eblanae
Chlorophthalmus atlanticus
Total

CATCH/HOUR weight numbers		- of tot c	SAMP
864.60	3080	48.26	166
60500	2332	33.77	165
75.68	792	4.22	169
66.00		368	
63.36	1936	3.54	167
30.58	44	1.71	
24.86	22	1. 39	
14. 30	198	0. 80	
13.42	22	0.75	
11.88	264	0.66	170
7.80	2	0.44	164
6.82	66	0. 38	168
2.86		0.16	
2.20	594	0.12	
198	66	0.11	
0.22	22		
0.00	22		
1791.56		100.00	

$$
\text { Sorted: } 113 \mathrm{~kg} \text { Total catch: } 113.53 \text { CATCH/HOUR: } 227.06
$$

spectes
Merluccius capensis. female Merluccius capensis, male Trachurus capensis
Austroglossus microlepis meriduccius capensis.
Meriuccius capensis. juveniles
Raja clavata
Sufflogobius bibarbatus
Todaropsis eblanae
Total

CATCH/HOUR		8 of tot	samp
weight	numbers		
108.80	660	47.92	150
78.50	588	34.57	151
12.98	46	5.72	
7.90	32	3.48	154
6.40	26	2.82	153
3.70	132	1.63	
2.42	128	1.07	152
2.30	2	1.01	
2.00	2	0.88	
1.10	220	0.48	
0.50	14	0.22	
0.46	24	0.20	
227.06		100.00	

Merluccius capensis. juveniles
Merluccius capensis, female
Merluccius capensis, female
Mufflogobius bibarbatus
Todaropsis capens eblanae
portunidae
Total

$$
\begin{aligned}
& \begin{array}{llrll}
\text { LOG }: 2020.00 & 2020.70 & 0.70 \quad & \text { Area code } \\
\text { FDEPTH: } & 142 & 145 & & \text { Gearcond code: }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sorted: } 11 \mathrm{~kg} \text { Total catch: } 11.06 \text { CATCH/HOUR: } 47.40
\end{aligned}
$$

species	CATC	HOUR	8 Of tot. c	SAMP
	weight	numbers		
Merluccius capensis, female	22.11	176	46.65	159
Merluccius capensis, juveniles	18.69	4564	39.43	160
Merluccius capensis, maje	6.00	56	12.66	158
sufflogobius bibarbatus	0.60	99	27	
Total	47.40		100.01	

Total

Sorted: 146 kg Total catch: 1085.39 CATCH/HOUR: 2170.78

species

Merluccius paradoxus, femal
Merluccius paradoxus, female
Merluccius paradoxus, male
Herluccius capensis, male
Shrimps. small. non comm.
Galeus polli
Helicolenus dactylopterus
Coelorinchus fasciatus
Coelorinchus fasciatus Trachurus capensis
rotal

CATCH/HOUR		\% of tot. C	SAMP
963.48	5950	44.38	173
559.44	680	25.77	171
250.86	1998	11.56	174
187.96	282	8.66	172
74.20		3.42	
64.68	696	2.98	
29.90	296	1. 38	
16.14	252	0.74	
14.06	14	0.65	
10.06	74	0.46	
2170.78		10000	

Sorted: 131 Kg Total catch: 日ll. 30 CATCH/HOUR: 1622.60
species
Merluccius paracoxus, female
Merluccius paradoxus, femal
Coelorinchus fasciatus
Helicolenus dactylopterus
Genypterus capensis
Malacocephalus laevis
Galeus polli
tophius vomerinus
Aristeus varidens
PHOTICHTHXIDAE
Hoplostethus atlanticus
NEMICHTHYIDAE
Total

CATCH/HOUR			
weight	numbers	OF TOT. C	SAMP
1042.20	2188	64.23	175
394.80	972	24.33	176
85.00	1012	5.24	
29.96	122	1.85	
21.30	8	1.31	180
20.64	40	1.27	
10.38	54	0.64	
5.80	54	0.36	
4.70	24	0.29	179
2.56	784	0.16	
2.02	202	0.12	
2.02	28	0.12	178
1.22	14	0.08	
1622.60		-100.00	

spectes
Merluccius paradoxus, female
Merluccius paradoxus, femai
Deepwater fishmixture
Merluccius paradoxus. male
Raja confundens
Todarodes sagittatus
Trachyrincus scabrus
Yachyrincus scabrus
Selachophidium guentheri
Nezumia sp
vezumia leonis
Myxine capensi
Aristeus varidens
rotal

species
Merluccius paradoxus, female
Coelorinchus braueri
centrophorus squamosu
SHR1MPS
Nezumia sp.
Genypterus capensis
Genypterus cap
Deania calcea
Malacocephalus laevis
Merluccius
Merluccius paradoxus. male
Raja sp
Photichthys argenteus
Todarodes sagittatus
Yarrella blackfordi
Hydrolagus sp
Neoscopelus macrolepidotus
Galeus polli
Shrimps, small, non comm Notacanthus sexspinis Ebinamia costaecanarie Leptostomias gracil
Lycodes aquihensis Malacocephalus occidentalis scopelosaurus meadi Etmopterus lucifer Lepidion capensis

Total

species
Merluccius paradoxus. female
Nezumia
RAJIDAE
Trachyrincus scabrus
Merluccius paradoxus, male
Selachophidium guent heri
Selachophidium guentheri
Raja leopardus
Raja leopardus
Shrimps. small.
Etmopterus lucifer
Raja confundens
Trachyscorpia capensis
Yarrella blackfordi
Notacanthus sexspinis
Todarodes sagittatus
coloconger scholesi
Galeus polli
Etmopterus pusillus
PORTUNIDAE
Total


```
\(\begin{array}{lrrr}\text { FDEPTH: } & 334 & 325 & 1.50 \\ \text { FDEPTH: } & 334 & 325 & \text { Gearcond code: }\end{array}\)
```



```
Sorted: 201 kg Total catch: 2622.84 CATCH/HOUR: 5245.68
```

species
Merluccius capensis, female
Merluccius capensis, male
Merluccius paradoxus, female
Merluccius capensis, juveniles
Merluceius paradoxus, male
Coelorinchus fasciatus
Galeus polli
Lophius vomerinus
MYCTopHiDAE
Trachurus capensis
Helicolenus dactyopterus
Genypterus capensis
portunidat
Krili
Total

CATCH/HOUR			OF TOT. C
weiqht	Sumbers	SAMP	
2596.80	3456	49.50	198
910.40	1536	17.36	197
891.20	7296	16.99	201
275.20	10370	5.25	199
219.20	1984	4.18	200
142.72	2224	2.72	
8.28	832	1.55	
73.90	18	1.41	196
19.20		0.37	
10.56	32	0.20	
8.96	64	0.17	
7.30	8	0.14	195
5.76	96	0.11	
3.20		0.06	
5245.68		100.01	

species
Herluccius capensis. juveniles
Sufflogobius bibarbatus
Squilla acuelata calmani
CRAB
Merlucius
Merluccius capensis, male
Total

CATCH/HOUR		Of tot c	SAMP
127.20	5184	73.85	202
31.04	6390	18.02	
7.04	32	4.09	203
4.88	184	2.83	
1.44	24	0.84	
0.64	8	0.37	204
172.24		100.00	

SPECIES	catc	- of tot. c
	ight	
Merluccius capensis. juveniles	60.00	100.00
Total	60.00	10000

SPECIES
Merluccius paradoxus, female
Merlucius paradoxus, male
Helicolenus dactylopterus
Coelorinchus fasciatus
Selachophidium gentheri
Genypterus capensis
Nezumia sp.
RAJIDAE
Malacocephalus laevis
Raja confundens
Raja leopardus
Todaropsis eblanae
MACROURDAE
PARALEPIDIDAE
PORTUNIDAE
TOtal

SPECles	CATCH/ROUR		8 OF TO	SAMP
	weight	numbers		
Merluccius capensis. female	180600	1620	59.94	212
Genypterus capensis	651.60	638	21.63	208
merluccius capensis. male	493.20	502	16.37	211
L.ophius vomerinus	1880	6	0.62	20.
Galeus polli	11.60	200	0.39	
Callorhinchus capensis	966	14	0.32	
Hexanchus griseus	780	2	0.26	
Merluccius capensis. juveniles	7.40	402	0.25	213
Austroglossus microlepis	674	36	0.22	210
Squilla acuelata calmani		14		
Total	301280		100.00	

SPECIES
Merluccius capensis, female
Genypterus capensis
Merluccius capensis, male coelorinchus fasciatus. merluccius paradoxus. female ophius vomerinus herluccius paradoxus. male entrolophus niger
Callinectes sp
Total

MP

219
215
218
218
100.01

species
Merluccius paradoxus, female
Merluccius capensis, female Meriuccius paradoxus, male Coelorinchus fasciatus Deepwater fish mixture
Helicolenus dactylopteru Todarodes sagittatus Lophius vomerinus Galeus polli
Genypterus capens is
Callinectes sp.
selachophidium guentheri
Total
 $\begin{array}{lllllll} & \text { start } & \text { stop } & \text { duration } & & \\ \text { TIME } & : 20: 30: 00 & 21: 00: 00 & 300 & \text { (min) } & \text { Purpose code: } & \\ \text { LOG } & : 2308.50 & 2309.70 & 1.20 & \text { Area code } & \end{array}$
$\begin{array}{lrrrl}\text { LOG }: 2308.50 & 2309.70 & 1.20 & \text { Area code } \\ \text { FDEPTH: } & 465 & 460 & \\ \text { EDEPTH: } & 455 & 460 & \text { Gearcond code: } \\ \text { Validity code: }\end{array}$

Sorted: 50 Kg Total catch: 50.27 CATCH/hoUR: 100.54
SPECRES
Merluccius paradoxus, female
SHRIMPS
Merluccius paradoxus, male
Raja confundens
Coelorinchus fasciatus
Helicolenus dactylopterus
Photichthys argenteus
Selachophidium guentheri
Galeus polli
Nezumia sp.
Todarodes sagittatus
MYCTophida
Nansenia tenera
Epigonus denticulatus
Macroparalepis macrogeneion
PORTUNIDAE

Catch/hour		Of tot C	SAMP
50.30	78	50.03	236
10.64	980	10.58	
9.40	18	9.35	235
6.90	4	6.86	
6.74	102		
6.04	22	6.01	
3.44	360	3.42	
342	62	3.40	
136	12	1.35	
0.90	40	0.90	
0.64		0.64	
0.40		0.40	
0.16	6	0.16	
0.10	2	0.10	
0.08	2	0.08	
0.02	2	0.02	
100.54		100.00	


```
TIME : 22:08:00 \(22: 38: 00 \quad 30\) (min) purpose code:
\(\begin{array}{lllll}\text { LIME } & : 22: 08.20 & 23 \\ \text { LOC } \\ \text { FDEPTH: } & 550 & 554 & 1.40 & \text { Area code } \\ \text { Gearcond code: }\end{array}\)
\(\begin{array}{lrrr}\text { FDEPTH: } & 550 & 554 & \text { Area code } \\ \text { BDEPTH: } & 550 & 554 & \text { Gearcond code }\end{array}\)
```



```
    Sorted: 132 ka Total catch: 236.58 CATCH/HOUR: 473.16
```

Species
Merluccius paradoxus, female
Coelorinchus matamua
Coelorinchus braueri
Nezumia sp.
Selachophidium guentheri
Ebinania costaecanarie
Deania protundorum
Coelorinchus fasciatus
Hydrolagus sp.
Etmopterus lucifer
Myxine capensis
Merluccius paradoxus, male
Photichthys argenteus
Shrimps, small, non comm.
Epigonus denticulatus
S H \quad I M P
Helicolenus dactylopterus
Tripterophyis gilchisti
Leptostomias gracilis
Total

CATCH/HOUR weight numbers		8 of tot c	SAMP	
209.20	180		44.21	238
52.00	240	10.99		
48.50	1078	10.25		
38.00	1048	8.03		
34.60	420	7.31		
34.20	30	7.23		
26.20	40	5.54		
12.90	110	2.73		
3.10	10	0.66		
2.90	10	0.61		
2.00	20	0.42		
1.96	2	0.41	237	
1.90	110	0.40		
1.50	260	0.32		
1.20	10	025		
1.10	80	0.23		
1.00	10	0.21		
0. 50	30	0.11		
0.40	10	0.08		
47316		99.99		

species
oplostethus ata
Deania profundorum
Merluccius paradoxus, femal
Nezumia sp.
Deania quadrispinosum
Epigonus denticulatus
coelorinchus matamua
Notacanthus sexspinis
Ebinania costaecanarie
elachop
Serluccius paradoxus. male
total

CATCH/HOUR			
weight	rumbers	OF TOT. C	SAMP
2057.00	3128	33.89	241
1825.80	1904	30.08	
1185.80	810	19.54	240
266.60	2924	4.39	
158.44	136	2.61	
153.00	204	2.52	
135.32	136	2.23	
116.88	476	1.92	
96.56	1088	1.59	
31.28	68	0.52	
21.76	68	0.36	
14.96	136	0.25	
7.00	8	0.12	239
6069.80		100.02	

239
Total

Sorted: 217 Kg Total catch: 96835 CATCH/HOUR: 193670
species

CATCH/HOUR			
Weight	numbers	OF TOT. C	SAMP
1001.60	2560	51.72	250
364.80	1126	18.84	249
300	16	2730	15.50
94.40	36	4.87	248
61.20	486	3.16	
35.80	22	1.85	246
26.42	8	1.36	247
19.40	244	1.00	
9.10	90	0.47	
8.70	140	0.45	
5.64	26	0.29	
4.74	128	0.24	
256		0.13	
2.18	26	0.11	
1936.70		99.99	

DATE: 7							Roject stat	ION	211
	$7 / 5 / 94$		GE	AR TYPE	bt No:1	POSI	ition:lat	5	2621
	start	stop	durat	ion			Long	E	1409
TIME :	:14:58:00	15:28:00	30	(min)	Purpose	de	3 -		
Log :	:2384.00	2385.60	1.60		Area cod		1		
FDEPTH:	336	327	Gearcond code:						
BDEPTH:	336	327							
	Towing di	80°	wire	out 10	0 m Spe	32	kn*10		
sorted	d: 209 kg		tal c	tch:	3590.94	CATC	Ch/HOUR:	718	

species	CATCH/HOUR		8 Of Tot	SAMP
	weight	numbers		
Merluccius capensis, female	347986	6142	48.45	256
Merluccius capensis. male	2005.40	4736	27.92	257
Merluccius paradoxus, female	1056. 36	5994	14.71	258
Merluccius paradoxus, male	255.30	1480	3.55	259
Coelorinchus fasciatus	222.74	3786	3.10	
Helicolenus dactylopterus	64.76	740	0.90	
Galeus polli	36.26	52	0.50	
Lophius vomerinus	30.20	14	0.42	261
Nezumia sp	15.18	740	0.21	
Callinectes sp	6.66	112	0.09	
Merluccius capensis, juveniles	6.30	148	0.09	262
cenypterus capensis	2.86	4	0.04	260
Total	7181.88		99.98	

DATE: 7						Project stat	Ion:	212
	7/5/94		gear type	BT No: 1	POS	Ition:Lat	s	2620
	start	stop	duration			Long	E.	1418
time	:17:12:00	17:42:00	30 (mín)	Purpose	de:			
FDEPTH:	: 2391.60	2393.40	1.80	Area code		1		
	296	288		Gearcond	ode :			
BDEPTH	296	288		validity	ode			
	Towing d	ir: 80°	wire out	50 m spee	32	kn* 10		
Sorted	ed: 163 kq		tal catch:	3264.90	cat	Ch/hOUR:	6529	

species	CATCH/HOUR		- of tot c	SAMP
	weight	numbers		
Merluccius capensis, female	3203.80	10780	49.06	267
Merluccius capensis. juveniles	1611.60	55334	24.68	268
Merluccius capensis, male	1559.20	7260	23.88	266
Lophius vomerinus	B5. 00	54	1.30	263
Coelorinchus fasciatus	46.20	936	0.71	
Squilla acuelata calmani	9.90	550	0.15	
Austroglossus microlepis	7.10	10	011	265
Galeus polli	2.20	110	0.03	
Sufflogobius bibarbatus	1.66	716	0.03	
Lepidopus caudatus	1.64	56	0.03	
Genypterus capensis	1.50	4	0.02	264
Total	6529.80		10000	

spectes	CATCH/hOUR weight numbers		OF rot	SAM
Merluccius capensis, female	23460	1266	46.74	271
Merluccius capensis. juveniles	140.70	5565	28.03	272
Merluccius capensis. male	9960	654	19.84	270
Lophius vomerinus	18.84	3	3.75	269
Thyrsites atun	450	3	90	
Chelidonichthys capensis	192	6	038	
Coelorinchus fasciatus	162	30	032	
Todaropsis eblanae	0. 18	6	004	
Total	50196		100.00	

Sorted: 32 kg Total catch: 133.00 CATCH/HOUR: 266.00
species
Merluccius capensis. juveniles
Sufflogobius bibarbatus
Thyrsites atun
Callorhinchus capensis
Total

spectes
Merluccius capensis, juveniles
Serfuccius capensis, female
utrluccius capensis. male
Merluccius capensis, male
Maurolicus muelleri
Total

CATCH/HOUR	OF TOT	C	SAMP
weight	numbers		
449.00	12656	81.43	276
41.20	460	7.47	275
37.20	9300	6.75	
22.40	290	4.06	274
1.20	700	0.22	
0.40	150	0.07	
551.40		100.00	

species
Merluccius capensis. female
Merluccius capensis, male
Merluccius capensis, jus
Sufflogobius bibarbatus
Total

CATCH/HOUR		OF TOT C	SAMP
weight	numbers		
3208.20	22534	47.93	277
2283.00	19806	34.11	278
1197.80	41850	17.89	279
4.74	1068	0.07	
6693.74		100.00	

DATE: 8	8/ 5/94					PROJECT Station			217
			GE	R TYPE:	BT No:1	posi	Ition:Lat	S	2602
	start	stop	durat				Long	E	1407
TIME	:14:16:00	14:46:00	30	(min)	Purpose	:	3 -		
Log	:2463. 50	2465.30	1.80		Area code		1		
FDEPTH	: 281	279			Gearcond				
BDEPTH	: 281	279			validity				
	Towing d	: 355°	Wire	ut: 85	50 m Speed	35	$\mathrm{kn}=10$		

species
Merluccius capensis, female
Merluccius capensis. male
Merluccius capensis, male
ophius vomerinus
Sufflogobius bibarbatus
Austroglossus microlepis
Coelorinchus fasciatus
Galeus polli
squilla acuelata calmani
orpedo nobiliana
MYCTOPHIDAE
epidopus caudatus
Total

CATCH/HOUR			
weight	numbers	OF TOT. C	SAMP
1200.00	3568	55.57	282
495.60	2346	22.95	283
266.00	8340	12.32	284
109.28	92	5.06	280
23.60	3690	1.09	
18.10	18	0.84	281
17.62	194	0.82	
15.80	638	0.73	
6.40	306	0.39	
3.12	2	0.14	
1.80	2638	0.08	
0.28	14	0.01	
2159.60		100.00	

species	CATCH/HOUR		3 Of tot	SAMP
	weight			
Merluccius capensis, temale	1084.20	1028	56.99	287
Meriuccius capensis, male	35360	620	18.59	286
Merluccius paradoxus, female	124.70	824	6.55	289
Lophius vomerinus	111.26	48	5.85	285
Coelorinchus fasciatus	70.20	1284	3.69	
portunidae	62.70	2132	3.30	
Galeus polli	35.80	542	1.88	
Helicolenus dactylopterus	30.40	264	1.60	
Merluccius paradoxus, male	18.90	144	0.99	288
Nezumia sp.		528	0.46	
Epigonus denticulatus	064	8	0.03	
squilla acuelata calmani	0.60	120	0.03	
Selachophidium guentheri	056	8	0.03	
Todaropsis eblanae		8	001	
Total	190260		10000	


```
IME \(\begin{array}{cc}\text { Start } & \text { stop } \\ \text { duration } \\ \text { 19:06:00 } \\ \text { 19:36:00 } & \text { (min) purpose code. }\end{array}\)
LOG :2491.50 \(2493.00 \quad 1.50\) (min) Area code :
```



```
    Sorted: 90 kg Total catch: 190.21 CATCH/HOUR: 380.42
```


species	CATCH/HOUR		OF tot C SAmp	
	weight	numbers		
Merluccius paradoxus, female	245.90	212	45.98	295
Deania calcea	55.20	56	1032	
Lophius vomerinus	41.90	6	7.84	298
nezumia sp.	40.20	04	7.52	
Raja confundens	31.20	8	5.83	
Selachophidium guentheri	25.36	384	4. 74	
Coelorinchus matamua	24.16	104	4. 52	
Etmopterus lucifer	18.80	4 B	3. 52	
Merluccius capensis. female	13.20	2	2.47	297
Todarodes sagittatus	11.04	16	2.06	
Ebinania costaecanarie	8. 72	8	1.63	
majidae	6.80	8	1.27	
Raja caudaspinosa	4.40	8	0.82	
Trachyrincus scabrus	384	24		
Merluccius paradoxus, male	1.48	2	0.28	296
Scomberesox saurus	0.80	-	0.15	
Epigonus denticulatus	0.72	-	0.13	
Galeus polii	0.64	16	0.12	
myxine capensis	0.40	8	0.07	
Total	534.76		99.99	

SPECIES	CATCH	Hour	Of tot	SAMP
	weight	numbers		
Merluccius paradoxus, female	448.20	374	33.19	299
Nezumia sp.	72.60	1342	1186	
Todarodes sagittatus	22.62	54	3.69	
Deania calcea	20.10	18	3.28	
selachophidium guentheri	18.90	276	3.09	
Lophius vomerinus	10.98	2	1.79	301
Hoplostethus cadenati	4.98	612	0.81	
Merluccius paradoxus, male	3.92	4	0.64	300
Epigonus denticulatus	2.82	48	0.46	
Galeus polli	1.86	6	0.30	
Photichthys argenteus	1.08	120	0.18	
Notacanthus sexspinis	1.08	42	0.18	
Etmopterus lucifer	0.90	12	0.15	
Yarrella blackfordi	0.84	48	0.14	
Scomberesox saurus	0.72	6	0.12	
Neocyttus rhomboidalis	0.42	6	0.07	
Ebinania costaecanarie	0.36	6		
Total	612.38		10001	

Merluccius paradoxus, female
Merluccius paradoxus.
Todarodes saqittatus
Galeus polli
Helicolenus dactylopterus
Genypterus capensis
selachophidium guentheri
Nezumia sp
Beryx splendens
Photichthys argenteus

Total

species
Meriuccius capensis, juveniles
Total

CATCHy Hour
numbers of tot c SAMP
Meriuccius capensis, juveniles total
$-\quad 2233.90-\quad 10000$


```
\(\begin{array}{lccccl}\text { TIME } & \text { 06:40:00 } & 07: 10: 00 & 30 & (\mathrm{~min}) & \text { Purpose code: } \\ \text { LOG } & \text { Area code } \\ \text { FDEPTM: } & 2678.60 & 2680: 20 & 1.60 & 220 & \text { Gearcond code: }\end{array}\)
\(\begin{array}{lrrrr}\text { FDEPTH: } & 227 & 220 & 1.60 & \text { Area code } \\ \text { BDEPTH: } & 227 & 220 & \text { Gearcond code }\end{array}\)
```



```
    Sorted: 165 kg rotal catch: 538.75 CATCH/HOUR: 1077.50
```

spectes
Merluccius capensis. male
Merluccius capensis, female Thyrsites atun Merluccius capensis, juveniles rachurus capensis ufflogobius bibarbatus Austroglossus microlepis Lepidopus caudatus

Total

species
Merluccius capensis, female
Merluccius capensis, male
Merluccius capenis, juveniles
Helicolenus dactylopterus
Merluccius paradoxus, female
Coelorinchus fasciatus
Lophius vomerinus
Trachurus capensis
Cubiceps caerulus
Todarodes sagittatus
Galeus polli
Nezumia leonis
MYCTopidaE
Chlorophthalmus atlanticus
PortunidaE
Merlucius paradoxus, male
Squilla acuelata calmani
Todaropsis eblanae
Total

Total

 $\begin{array}{llllll}\text { LIME } & \text { 09:07:00 } & \text { 09:37:00 } & \text { 30 } \\ \text { LOG } & \text { (min) } & \begin{array}{l}\text { Purpose code: } \\ \text { Area code }\end{array}\end{array}$ $\begin{array}{lrrll}\text { LOG : } & 2693.30 & 2694,80 & 1.50 & \text { Area code } \\ \text { FDEPTH: } & 300 & 320 & \text { Gearcond code: } \\ \text { BDEPTH: } & 300 & 320 & \text { Validity code : }\end{array}$ Towing dir: 270° wire out: 850 m speed: $30 \mathrm{kn} \times 10$ Sorted: 147 kg Total catch: 1503 89 CATCH/HOUF: 3007.78

spectes
Merluccius paradoxus. female Galeus polli
Merluccius capensis, female
Hoplostethus cadenati
Nezumia sp
Deepwater fish mixture
Selachophidium quentheri
Notacanthus sexspinis
Helicolenus dactylopterus
Genypterus capensis
Trachipterus jacksonensis
Lophius vomerinus
Merluccius paradoxus. male
Tripterophyeis gillchristi
gonostomatidae
Merluccius capensis. ma
Todarodes sagittatus
Epigonus denticulatus
Ebinania costaecanarie
mYCTOPHIDAE
elorinchus fasciatus

CATCH/HOUR			
weight	numbers	OF TOT. C	SAMP
186.10	308	54.37	325
42.40	1016	12.39	
29.00	16	8.47	323
16.64	682	4.86	
13.48	586	3.94	
12.32		3.60	
8.88	172	2.59	
852	264	2.49	
5.64	28	1.65	
4.10	2	1.20	328
3.40	2	0.99	
2.90	2	0.85	327
2.10	12	0.61	326
1.64	220	0.48	
1.60	80	0.47	
1.30	2	0.38	324
0.92	4	0.27	
0.48	4	0.14	
0.36	8	0.11	
0.32	44	0.09	
0.16	4	0.05	
342.26		100.00	

Sorted: 294 Kg Total catch: 459.75 CATCH/HOUR: 919.50
spectes
Merluccius paradoxus, female
Nezumia sp.
Todarodes sagittatus
Selachophidium quenther
Lophius vomerinus
Merluccius paradoxus, male
Epigonus denticulatus
Deania calcea
ATELEOPODIDAE
Coelorinchus matamua
Trachyrincus scabrus
Trachyrincus scabru
Etmopterus lucifer
Galeus polli
Notacanthus sexspinis
Total

CATCH/HOUR		8 OF TOT C	SAMP
475.40	592	51.70	329
144.76	7824	15.74	
67.34	1182	7.32	
60.06	140	6.53	
34.58	504	3.76	
32.90	${ }_{4}^{4}$	358	331
26.20	38	2.85	330
23.52	364	2.56	
17.50	14	1.90	
16. 24	882	1.77	
9.24	70	1.00	
4.34	70	0.47	
4.20	14	0.46	
2.24	28	0.24	
098	56	011	
919.50		99.99	

species	CATCH/HOUR		8 OF тот	SAMP
	weight	numbers		
Merluccius paradoxus. female	312.00	506	4197	340
Hoplostethus cadenati	96.04	3946	12.92	
Raja confundens	70.00	56	9.42	
Todarodes sagittatus	59.92	182	8.06	
Selachophidium guentheri	40.04	574	539	
Galeus polli	31.92	364	4.29	
Ebinania costaecanarie	24.50	70	3. 30	
centroscymnus crepidater	20.30	14	2.73	
Lophius vomerinus	20.28	4	2.73	337
Deania calcea	17.92	28	2.41	
Nezumia micronychodon	14.00	434	1.88	
Lithodes ferox	10.80	18	1.45	
Meriuccius paradoxus. male	7.90	12	1.06	339
MYCTOPHIDAE	7.00		0.94	
Shrimps, small, non comm.	560		0.75	
Cubiceps caerulus	252	28	0.34	
Merluccius capensis, female	180	2	0.24	338
Trachyrincus scabrus		14	0.08	
Epigonus denticulatus	0.14	14	0.02	
Squilla acuelata calmani	0.14	28	0.02	
Total	74338		100.00	

```
Merluccius paradoxus. femal
Trachyrincus scabrus
Selachophidium guent he
Dicrolene introniqra
Deania calcea
Todarodes sagittatus
Merluccius paradoxus
Hoplostethus cadenati male
Allocyttus verrucosus
Raja confundens
hrimps, small, non coms
```

Total

species
Trachurus capensis
Merluccius capensis, female Merluccius capensis, juveniles Merluecius capensis, male Coelorinchus fasciatus Lophius vomerinus
Sufflogobius bibarbatus
Helicolenus dactylopterus
Austroglossus microlepis
Total

species

Merluccius capensis, female
Merluccius capensis, male Merluccius capensis, juveniles Trachurus capensis

Total

CATCH/HOUR weight numbers		8 OF TOT	SAMP
263.00	2140	48.06	353
199.00	1330	36.37	352
46.60	1180	日 52	354
33.30	220	6.09	355
5.30	600		
547.20		10001	

$$
\begin{aligned}
& \text { DATE: } 11 / \text { 5/94 GEAR TYPE: BT NO: } 7 \text { POSITION:LAT STATION: } 235 \\
& \text { TIME 12.39.00 stop du.09.00 } 30 \text { (min) purpose code: } \\
& \begin{array}{l:ccccl}
\text { LIME } & \text { 12:39:00 } & 13: 09: 00 & 30 & \text { (min) } & \text { Purpose code: } \\
\text { Area code } & \\
\text { FDEPTH: } & 2811 & 220 & 2813: 00 & 1.80 & \\
\text { Arearcond code: }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sorted } 78 \mathrm{~kg} \text { Total catch: } 769.69 \text { CATCh/Hour: } 1539.78
\end{aligned}
$$

specties

Merluccius capensis, female
Merluccius capensis, male
Merluccius capensis. juveniles sufflogobius bibarbatus
Total

species

Merluccius capensis, female
tophius vomerinus
Merluccius capensis, male
Helicolen
merluccius dactylopterus mbinanias capensis, juveniles
Todarodes sagittanas
Todarodes sagittatus
Merluccius paradoxus. female
Merluccius paradoxus. female
Coelorinchus fasciatus
Merluccius capensis, male
Galeus polli
Merluccius paradoxus, female
Merluccius paradoxus, male
Selachophidium guenther
Notacanthus sexspinis Notacanthus sexspinis
Merluccius paradoxus

Total


```
\(\begin{array}{llrll}\text { LOG :2895.70 } & 2897.20 & 1.50 \quad & \text { Area code } & \text { Gearcond code: }\end{array}\)
```


Sorted: 186 kg Total catch: 851.92 CATCH/HOUR: 1703.84
species

Merluccius paradoxus, femaleMerluccius capensis, femalemerluccius capensis, maleMerluccius paradoxus. maleCoelorinchus fasciatusTrachurus capensisSelachophidium guentheriTodarodes sagittatusEpigonus denticulatusLophius vonerinusCenypterus capensisMYCrophidaeNezumia spGaleus poliKrillGuentherus altivelaPORTUNIDAE	

Total

CATCH/HOUR			
weight	nurbers	OF TOT. C	SAMP
797.50	2880	46.81	392
635.00	512	37.27	390
49.30	58	2.89	389
42.60	184	2.50	391
28.04	436	1.65	
26.40	48	1.55	393
24.16	38	1.42	
22.32	48	1.31	
19.80	764	1.16	
19.52	14	1.15	387
10.70	8	0.63	388
9.60		0.56	
8.50	280	0.50	
6.20	126	0.36	
2.40	10	0.14	
1.50	10	0.09	
0.30	10	0.02	
1703.84		100.01	

species	CATCH/HOUR		of tot. c samp	
	weight	numbers		
Merluccius capensis, juveniles	1120.90	43472	30.18	403
Trachurus capensis	1092.06	6816	29.41	404
Merluccius capensis. female	773.48	6942	20.83	401
merluccius capensis, male	640.34	7164	17.24	402
Sufflogobius bibarbatus	54.20	348 B	1.46	
Todarodes sagittatus	19.60	32	0.53	
coelorinchus fasciatus	7.60	158	0.20	
Pterothrissus belloci	444	32	0.12	
Squilla acuelata calmani	0.94	64	0.03	

species
Merluccius capensis. juveniles Merluccius capensis. juveni Merluccius capensis. female Total

| CATCH/HOUR | | OF TOT C |
| ---: | ---: | ---: | ---: |
| weight | numbers | S |
| 161.50 | 6542 | 88.20 |
| 10.80 | 160 | 5.90 |
| 10.40 | 150 | 5.68 |
| 0.40 | 150 | 0.22 |
| 183.10 | | -100.00 |

SPECIEs
Merluccius capensis, juveniles
Merluccius capensis, female
Merluccius capensis, male
Helicolenus dactyiopterus
Merluccius capensis, femaie
Trachipterus jacksonensis
Trachurus capensis
Galeus poli
Coelorinchus fasciatus
Todarodes sagittatus
Merluccius capensis, male
Sufflogobius bibarbatus
Lepidopus caudatus
Lophius vomerinus
Chlorophthalmus atlanticus
Total

Total

Catch/hour		Q of tot c samp	
weight	numbers		
2032.24	70672	56.20	430
478,80	2872	13.24	428
367:08	2340	10.15	429
175.00	5692	4.84	
122.90	104	3.40	425
110.64	54	3.06	
102. 14	212	282	43
79.80	2288	2.21	
61.18	1916	1.69	
34. 00	54	0.94	
27.90	30	0.77	426
10.20	958	0.28	
9.04	54	0.25	
2.88	4	0.08	42
2. 20	320	0.06	
3616.00		99.99	

$\begin{array}{lrrrl}\text { LOG : } 302920 & 3031,00 & 1.80 & \begin{array}{l}\text { Area code } \\ \text { FDEPTH: } \\ \text { BDEPTH: }\end{array} & 291 \\ 291 & 291 & & \text { Gearcond code }\end{array}$
Towing dir: 360° wire out: 900 m Speed: $35 \mathrm{kn} * 10$
Sorted: 500 kg Total catch: 1349.26 CATCH/HOUR: 2698.52 SPECIES
Trachurus capensis
Merluccius capensis, male
Merluccius capensis, fema
Merluccius capensis, juveniles Galeus polli
Coelorinchus fasciatus
Chiorophthalmus atianticus
Beryx splendens
Lepidopus caudatus
Scomber japonicus
Merluccius paradoxus. female
Total

Catch/hour		8 OF TOT C SAMP	
weight	numbers		
980.80	2560	36.35	445
544.40	294	20.17	440
358. 40	9190	13.28	
327.20	410	12.13	439
255.68	10944	9.47	443
114.24	4576	4.23	
82. 24	2720	3.05	
12.32	12	0.46	441
7.68	928	0.28	
6.72	64	0.25	
4.16	32	0.15	
3.90		0.14	
0.78	6	0.03	442
2698.52		99.99	

							Rojec	T STA	Ion		
DATE: 13	3/ 5/94			Ar TYPE:	BT No: 7	POSI	ITION	: Lat			2401
	start	stop	dura	ion				long	E		1310
TIME :	:18:50:00	19:20:00	30	(min)	Purpose	de:	3				
LOG :	: 3045.20	304680	1.6		Area code		2				
FDEPTH:	: 600	597			Gearcond	ode:					
	600	597			validity	ode:					
Towing		ir: 340°	wire	out : 17	0 m spee	32	kn*1				
Sorted	d: 227 k		tal	atch:	438.71	catc	CH/ H	UR:			. 42

sPECIES
merluccius paradoxus, female
Deania calcea
Deania profundorum
Todarodes sagittatus
Beryx splendens
Galeus polli
Trachyrincus guentheri Hoplostethus cadenati Ebinania costaecanarie
Merluccius paradous Merluccius paradoxus. male Coelorinchus matamua
shrimps. small, non comm
Yarrella blackfordi
Lithodes ferox
Lophius vomerinus
Dophius vomerinus
Epigonus denticulatus
stereomastis sculpta
Total

CATCH/HOUR			
weight	numbers	OF TOT. C	SAMP
387.40	390	44.15	448
81.00	54	9.23	
77.04	1806	8.78	
53.10	54	6.05	
52.20	126	5.95	
37.26	288	4.25	
34.92	450	3.98	
32.94	540	3.75	
24.48	72	2.79	
23.40	468	2.67	
17.46	18	1.99	
10.80	10	1.23	447
8.64	36	0.98	
8.10	18	0.92	
7.92	342	0.90	
7.20	0.82		
6.66	36	0.76	
4.38	4	0.50	446
1.62	36	0.18	
0.54	18	0.06	
0.36	18	0.04	
877.42		99.98	


```
IME \(\quad\) start stop duration
LoG : \(3052.00 \quad 3053.50 \quad 1.50\) (min) \(\begin{aligned} & \text { Purpose code: } \\ & \text { Area code }: 2\end{aligned}\)
```



```
    Towing dir: \(340^{\circ}\) wire out: 1800 m Speed: 30 kn " 10
    Sorted: 287 kg Total catch: 287.12 CATCH/HOUR: 574.24
```

SPECIES CATCH/HOUR \& TOT. C SAMP
Deepwater fish mixture
Merluccius paradoxus. female
Merluccius paradoxus. temale
Lophius vomerinus
Total

CATCH/Hour		\& OF TOT. C	SAMP
weight	numbers		
400.00		69.66	
170.40	156	29.67	451
2.04	2	0.36	450
1.80	2	0.31	449
574.24		100.00	

SPECIES	CATCH/HOUR		8 OF TOT	SAMP
	weight	numbers		
Hoplostethus cadenati	399.00	15384	36.53	
Trachyrincus scabrus	243.00	1620	22.25	
Merluccius paradoxus. female	14200	296	1300	455
Ebinania costaecanarie	62.40	60	5.71	
Nezumia leonis	56.70	2040	5.19	
Galeus polli	43.80	360	4.01	
Helicolenus dactylopterus	43.20	360	3. 95	
Selachophidium guentheri	29.70	600	2.72	
Todarodes sagittatus	14.40	60	1. 32	
Epigonus denticulatus	12.60	150	1.15	
merluccius capensis, female	12. 30	6	1.13	453
Trachipterus jacksonensis	10:00	4	0.92	
Yarrella blackfordi	9.60	${ }^{810}$	0.88	
$5 \mathrm{HRIM}^{\text {P P }}$	8.70	930	0.80	
Lophius vomerimus	2.82	4	0.26	452
Merluccius paradoxus, male	2.10	4	0.19	454
Total	1092.32		100.01	

Total

Sorted: 77 kg Total catch: 419.47 САтCH/HOUR: 838.94

species

Merluccius capensis, female Merluccius capensis, male Trachurus capensis Chelidonichthys capensis Merluccius capensis, juveniles pterothrissus belloci iophius vomerinus trachurus capensis. juvenile Total

CATCH/HOUR		OF TOT C	SAMP	
282.40	2116		3366	485
240.84	2408	28.71	486	
175.00	1274	20.86	489	
115.60	410	13.78		
21.50	778	2.56	487	
2.06	226	0.25		
0.74	10	0.09		
0.70	10	0.08	490	
0.10	32	0.01	49	
83894		100.00		

species
Merluccius capensis. female
Merluccius capensis. male
merluccius capensis, male Chelidonichthys capensis total

CATCH/HOUR weight rumbers		Q of tor
6.70	82	63.21
2.30	30	21.70
1.20	66	1132
0.40	2	3.77
10.60		10000

 species

Merluccius capensis. juvenile
Merluccius capensis. male
Herluccius capensis, female
Sufflogobius bibarbatus
Trachurus capensis. juvenile
total

Merluccius capensis, juveniles Merluccius capensis, male Merluccius capensis. female sufflogobius bibarbatus Trachurus capensis

weight	numbers	
26.40	1122	34.59
25.20	426	33.02
22.80	348	29.87
1.08	138	1.42
0.78	6	1.02
0.06	18	0.08
76.32		100.00

rotal

Merluccius capensis. male
Merluccius capensis. female
Merluccius capensis, juveniles Trachurus capensis
pterothrissus belloci
Coelorinchus fasciatus Helicolenus dactylopterus PORTUNIDAE
Chelidonichthys capensis Lophius vomerinus Trachurus capensis, juvenile

CATCH/HOUR		Of tot	SAMP
780.48	8502	3134	504
773.16	6602	3105	503
490.10	26792	19.68	505
381.74	2600	1533	506
16.68	466	067	
1400	534	0.56	
9.00	566	0.36	
766	334	031	
100	34	0.28	
5.48	12	0.22	501
4.60	6	0.18	502
034	100		507
2490-24			

Sorted: 545 kg Total catch: 1744.93 CATCH/HOUR: 3489.86
SPECIES
Hexanchus griseus
Merluccius capensis, female
Todarodes sagittatus
Merluccius paradoxus, female
Merluccius capensis, male
Deepwater fishmixture
Helicolenus dactylopterus
Lophius vomerinus
Galeus polli
Coelorinchus fasciatus
Merluccius paradoxus, male
Beryx splendens
Merluccius capensis, female
Nezumia sp.
Genypterus capensis
Selachophidium guentheri
Merluccius capensis. juveniles
Malacocephalus laevis
portunidaE
total

Catch/hour		OF TOT C	Amp
weight	numbers		
2000.00	2	57.31	
678.00	442	19.43	520
184.80	432	5.30	
166.40	700	4.77	511
110.90	134	3.18	509
104.16		2.98	
83.20	1328	2.38	
55.60	36	1.59	514
36.32	512	1.04	
31.04	304	0.89	
12. 50	56	0.36	512
8.32	16	0.24	
5.62	34	0.16	508
4.16	112	0.12	
3.30	2	0.09	513
1.76	32	0.05	
1.38	52	0.04	510
1.28	16	0.04	
1.12	48		

$\overline{3489.86} \quad 100.00$

							project	Stat			267
DATE: 15/ 5/94			gear type: bt No:7			posi	Ition:	Lat	s		318
	start	stop	durat					Long	E		259
TIME : 18:47:00 19:17:00 30 (min) Purpose code											
LOG $: 3239.40 \quad 3240.90 \quad 1.50$ (min) Area code		3240.90	1. 50		Area code		2				
FDEPTH: 655652 gearcond code:											
BDEPTH:	655	652	validity code								
Towing dir: 360° wire out: 1800 m Speed: $31 \mathrm{kn*10}$											
sorted	d: 97 k		tal	tch:	286.58	cat	СН/HOU			3.	

species	CATCH/HOUR		Of tot	SAMP
	weight	numbe		
Hoplostethus cadenati	180.62	6132	31.51	
Merluccius paradoxus. temale	151.80	146	26 48	521
Deania calcea	79.20	66	13.82	
Neocyttus rhomboidalis	62.70	110	10.94	
Lamprogranmus exutus	28.82	1.32	503	
Nezumia sp	23.32	1012	4.07	
selachophidium quentheri	13.42	176	2.34	
Diplophos maderensis	7.70	132	1. 34	
Yarrella blackfordi	6.30	242	1.11	
Galeus polli	5.06	44	088	
OPHICHTHIDAE	4.84	44	0.84	
Lophius vomerinus	3.46	4	0.60	523
oreosoma at lanticum	2.42	44	0.42	
Merluccius paradoxus. male	2.10	2	0.37	522
Shrimps, small, non comm	1. 32	88	0.23	
Total	573:16		99.98	

Total


```
    DATE: \(15 / 5 / 94\) GEAR TYPE: ET NO:7 POSITION: Lat \(\quad\) stop 2302
    \(\begin{array}{ll}\text { start stop } \\ \text { duration } \\ \text { stang } & \text { E } \\ 1302\end{array}\)
```



```
    \(\begin{array}{lrrll}\text { LOG }: 3258.10 & 325920 & 1.10 & \text { Area code } \\ \text { FDEPTH: } & 450 & 444 & & \text { Gearcond code } \\ \text { BDEPTH: } & 450 & 444 & & \text { Validity code: }\end{array}\)
    Towing dir: \(355^{\circ}\) wire out: 1250 m Speed: \(23 \mathrm{kn*} 10\)
```

 Sorted: 143 kg Total catch: 371.93 CATCH/HOUR: 743.86
 species
Trachyrincus scabrus \quad weight numbe
$\begin{array}{lrrrr} & 385.00 & 3352 & 51.76 \\ \text { Merluccius paradoxus. female } & 192.90 & 464 & 25.93 & 527 \\ \text { Merluccius capensis, female } & 25.50 & 10 & 3.96\end{array}$
$\begin{array}{lrrrr}\text { Herluchus capens } 15 \text {, female } & 26.50 & 10 & 3.56 & 5 \\ \text { Helicolenus dactylopterus } & 25.74 & 418 & 3.46 & \end{array}$
Selachophidium guenther
Todarodes sagittatus
Nezumia sp
Lophius vomerinus
Deania calcea
Hoplostethus cadenat
Merluccius paradoxus. male
Yarrella blackfordi
Epigonus denticulatus
Epigonus denticulatus
Ebinania costaecanarie
Raja confundens
Total

Date: 16	6/ 5/94		project station: 270							
				AR TYPE:	BT No: 7	Posi	ITION:	Lat	S	2301
	start	stop	durat	ion				Long	E	1311
time :	06:35:00	07:05:00	30	(min)	Purpose cod		3			
Log	-3279 00	3280	1.70		Area code		2			
FDEPTH:	325	312			Gearcond.	de :				
BDEPTH:	325	312			validity					
	Towing d	ir: 360°	wite	out: 95	0 m Spee	33	kn* 10			

species
Merluccius paradoxus. female
Merluccius capensis. female
Helicolenus dactylopterus
coelorinchus fasciatus
Galeus polli
Lophius vomerinus
Merluccius capensis, juveniles
Merluccius capensis, mal
Epigonus denticulat
Trachurus capensis
Merluccius paradoxus. male
Nezumia leonis non corm
Shrimps. sma
PORTUNIDAE
Total

Merluccius capensis, female
Merluccius capensis, juveniles
Lophius vomerinus
Merluccius capensis, male
Merluccius capensis, female
Helicolenus dactylopterus
Merluccius capensis. male
Trachurus capensis.
Coelorinchas fasciatus
Todarodes sagittatus
Galeus poli
Coelorinchus coelorhinc. polli
Nezumia leonis
Chlorophthalmus atlanticus
chlorophthalmus atlanticus
Squilla acuelata calmani
Total

Catch/hour		8 Of tot	SAMP
weight	numbers		
295.20	358	3989	539
153.60	8132	20.76	542
53.56	96	7.24	537
47.30	114	6.39	538
37.76	416	510	541
37.12	1424	5.02	
35.20	368	4.76	540
26.40	80	3.57	543
22.88	400	3.09	
12.00	16	1.62	
7.84	304	1.06	
6 88	240	0.93	
2.24	160	0. 30	
1.92	144	0.26	
0.16	16	0.02	
740.06		100.01	

species

Merluccius capensis, juveniles
Merluccius capensis. female Merluccius capensis. male Total

CATCH/HOUR weight numbers		\% OF TOT C	SAMP
5.10	200	83.33	553
0.64	8	10.46	551
0.38	6	6.21	552
6.12		100.00	

				Project station:				5
DATE:18/ 5/94		gear type	Br No: 7	POSI	ITION:Lat	5		237
start	stop	duration			Long	E		333
TIME : $16: 26: 00$ 16:56:00 30 (min) Purpose code:								
LOG: $343.80 \quad 3440.60 \quad 1.80$ Area code								
$\begin{array}{llll}\text { FDEPTH: } & 139 & 180 & \text { Gearcond code: } \\ \text { BDEPTH: } & 139 & 180 & \text { validity code }\end{array}$								
Towing dir: 260° wire out : 500 m speed: $35 \mathrm{kn*10}$								
Sorted: 25 kg	Tо	tal catch:	75.75	cat	сh/hour:			

species	catc	UR	OF TOT	SAMP
	weight	bers		
Merluccius capensis juvenites	92.10	3206	60.79	556
Merluccius capensis. female	30.36	366	20.04	554
Merluccius capensis, male	22.92	300	15.13	555
sufflogobius bibarbatus	3.36	300	2.22	
Trachurus capensis. juvenile	2.76	108	1.82	557
Total	151.50		100.00	

 Total

Species	Catch/hour		8 OF TOT. C	SAMP
	weight	numbers		
Merluccius capensis, female	291.90	152	41.25	566
Galeus polli	64.00	840	9.04	
Helicolenus dactylopterus	$4 \mathrm{B}$.	180	90	
Todarodes sagittatus	44:60	80	6. 30	
Merluccius paradoxus, female	37.10	106	5.24	568
Selachophidium guentheri	36.00	660	5.09	
Lophius vomerimus	31.98	36	4.52	363
Merluccius capensis, male	31.70	26	48	565
Etmopterus lucifer	31.00	100	4.38	
Raja confundens	24.40	20	3.45	
Nezumia leonis	21.20	660	3.00	
Coelorinchus fasciatus	17.20	300	243	
Epigonus denticulatus	8.40	200	19	
Neania calcea	7.20	20	02	
Centrolophus niger	6.34	2	090	
Genypterus capensis	4.00	2	0.57	564
Merluccius paradoxus, male	1.02	6	014	567
Notacanthus sexspinis	0.80	60	11	
Total	70764		100.01	


```
\(\begin{array}{llll}\text { FDEPTH: } & 265 & 261 & \begin{array}{l}\text { Gearcond code } \\ \text { BDEPTH: }\end{array} \\ 265 & 261 & \text { validity code }\end{array}\)
    Towing dir: \(150^{\circ}\) wire out: 750 m speed: \(31 \mathrm{kn} * 10\)
    Sorted: 36 kg Total catch: 108.42 CATCH/HOUR: 216.84
```

species
Merluccius capensis. female
Merluccius capensis, male
Mrachurus capensis
Total

Total


```
rotal
Merluccius capensis. juveniles
Merluccius capensis, juvenil
Herluccius capensis, male
otal
```


rotal

DATE:20/5/94 GEAR TYPE: BT NO: 7 PROSITION:LAL STATION: 290

$\begin{array}{lllllll}\text { TIME } & : 18: 20: 00 & 18: 50: 00 & 30\end{array}$ (min) $\begin{array}{llll}\text { Purpose code: } & 3 \\ \text { LOG } & : 3672.30 & 3673.80 & 1.50\end{array}$
$\begin{array}{lrrll}\text { LOG }: 3672.30 & 3673.80 & 150 & \text { Area code } \\ \text { FDEPTH: } & 450 & 544 & & \text { Gearcond code: } \\ \text { BDEPTH: } & 450 & 544 & & \text { Validity code: }\end{array}$

Sorted: 342 kg Total catch: 726.36 CATCH/HOUR: 1452.72
species
Trachyrincus scabrus
Merluccius paradoxus, female
Helicolenus dactylopterus
Nezumia leonis
Galeus polli
Merluccius capensis, female
meriuccius paradoxus
Merluccius capensis, male
Hoplostethus cadenat i
Geryon maritae
Lithodes ferox
Lithodes fero
Plesionika sp
Todarodes sagittatus
Aristeus varidens
Epigonus denticulatus
Total

CATCH/HOUR	OF TOT. C	SAMP	
weight	numbers		
595.00	4148	40.96	
328.80	722	22.63	621
243.00	164	16.73	617
82.28	238	5.66	
74.80	1768	5.15	
38.42	510	2.64	
36.50	22	2.51	619
18.02	136	1.24	
12.50	40	0.86	620
7.30	6	0.50	616
2.72	136	0.19	
2.46	2	0.17	
2.42	2	0.17	
2.04	952	0.14	
2.04	4	0.14	
1.70	306	0.12	
1.70	68	0.12	
1.02	34	0.07	

SPECIES	CATCH/HOUR		- of tot. C	
	weight	numbers		
Trachyrincus scabrus	479.70	2166	60.30	
Merluccius paradoxus female	169.70	258	21.33	626
Lophius vomerinus	44.06	28	5.54	628
Hoplostethus cadenati	37.96	1430	4.77	
Nezumia sp	18.98	858	2.39	
Helicolenus dactylopterus	16.12	26	2.03	
Lithodes ferox	9.40	18	1.18	
Rajidae	8.58	76	1.08	
merluccius paradoxus male	4.50	8	0.57	627
Galeus polli	4.16	52	0.52	
Laemonema laureysi	1.56	52	0.20	
Epigonus telescopus	0.52	104	0.07	
Epigonus denticulatus	0.26	26	0.03	
Total	795.50		100.01	

DATE: $20 /$					Project station 293				
	/ 5/94	stop	GEAR TYPE:durat No: 7						
	Start				Purpose code: 3 Long		E	1237	
TIME	23:35:00	00:05:00	30 (min)	Purpose code :Area code					
Log	369360	3695.10	150						
FDEPTH:	467	459		Gearcond	ode:				
BDEPTH:	467	459 validity code:							
Towing dir: 340° Wire out: 1300 m speed: $31 \mathrm{kn*10}$									
sorted	d: 188 kg	rotal catch:		476.05	catc	H/hour:	952.10		

Species	CATCH/HOUR		8 of tot	SAMP
	weight	numbers		
Trachyrincus scabrus	563.20	3308	59.15	
Merluccius paradoxus. female	17110	258	17.97	631
Lophius vomerimus	86.42	60	908	633
Merluccius capensis. female	73.10	38	7.68	629
Galeus polli	19.20	192	2.02	
Nezumia sp.	16.00	672	168	
Helicolenus dactylopterus	8.96	96	094	
Merluccius capensis. male	5.10	4	0.54	630
Aristeus varidens	3.20	576	0.34	
Merluccius paradoxus, male	2.30	6	0.24	632
Ebinania costaecanarie	1.92	64	020	
Hoplostethus cadenati	0.96	32	0.10	
Epigonus denticulatus	0.32	32	0.03	
Notacanthus sexspinis	0.32	32	0.03	
Total	952.10		10000	

```
DATE: \(21 /\) 5/94 GEAR TYPE: BT NO: 7 PROSECT STATION: 294
\(\begin{array}{llllll}\text { start stop duration } & \text { Long } & \text { E } & 1239\end{array}\)
\(\begin{array}{lllll}\text { TIME } & : 06: 43: 00 & 07: 13: 00 & 30 \\ \text { LOG } & : 3710: 00 & 371140 & \text { (min) } & \text { Purpose code: } \\ \text { Area code }\end{array}\)
\(\begin{array}{lrrrr}\text { LOG :3710.00 } & 371140 & 140 & \text { Area code } \\ \text { FDEPTH: } & 403 & 406 & & \text { Gearcond code }\end{array}\)
```



```
    Sorted : 419 kg Total catch: \(703.41 \mathrm{CATCH} / \mathrm{HOUR}\) : 1406 B 2
```

species	CATCh/hour		8 OF TOT	SAMP
	weight			
Merluccius capensis. female	52540	312	37.35	637
Trachyrincus scabrus	47850	8614	34.01	
merluccius capensis, male	123.30	112	8.76	636
Lophius vomerinus	9640	112	6.85	634
Helicolenus dactylopterus	53.70	450	3.82	
Lophius vaillanti	52.10	10	3.70	635
chiorophthalmus atlanticus	28.80	870	2.05	
Selachophidium guentheri	1530	570	1.09	
Nezumia leonis	12.90	510	0.92	
galeus polli	6.90	90	0.49	
Coelorinchus fasciatus	6.90	120	0.49	
Ebinania costaecanarie	3.30	30	0.23	
Shrimps, small, non comm.	2.40	510	0.17	
Austroglossus microlepis	0.68	4	0.05	
Merluccius paradoxus. female	0. 24	2	0.02	
Total	1406.82		100.00	

species
Merluccius capensis, temale
Merluccius capensis, temal
Merluccius capensis, male
Dentex macrophthalmus
Sufflogobius bibarbatus
Merluccius capensis, juveniles
Todarodes sagittatus
Austroglossus microlepis
Lophius vomerinus
Total

CATCH/HOUR		8 OF tot C	SAMP
weight	numbers		
312.78	764		641
209.04	504	33.33	640
79.56	344	12.69	
9.00	2296	1.44	
6.82	546	1.09	642
3.90	214	0.62	
2.46	6	0.39	
2.40	6	0.38	639
108	6	0.17	638
627.04			

Trachurus capensis
Merluccius capensis, female
Merluccius capensis. male
Merluccius capensis. juveniles

CATCH/HOUR		OF TOT C	SAMP
weight	numbers		
1268.00	20932	82.23	650
130.60	1620	8.47	647
91.00	1280	5.90	648
52.40	2460	3.40	649
1542.00		10000	

Trachurus capensis
Meriuccius capensis, juveniles
Merluccius capensis, female
Meriuccius capensis, male
Chatrabus melanurus.
Sufflogobius bibarbatus

catc	HoUR	\& OF TOT C
weight	numbers	
148.50	2662	34.99
138.16	5654	32. 56
70.62	902	16.64
50.82	770	11.98
1320	44	3.11
3.08	462	0.73


```
\(\begin{array}{lrrrl}\text { LOG } & : 3880.00 & 3880.90 & 0.90 & \begin{array}{l}\text { Area code } \\ \text { FDEPTH: }\end{array} \\ & 161 & 159 & & \text { Gearcond code: }\end{array}\)
\(\begin{array}{llll}\text { FDEPTH: } & 161 & 159 & \text { Gearcond code } \\ \text { BOEPTH: } & 161 & 159 & \text { Validity code }\end{array}\)
Towing dir: \(340^{\circ}\) Wire out: 450 m speed: \(30 \mathrm{kn} * 10\)
    Sorted: 2 kg Total catch: 9.84 CATCH/HOUR: 32.80
```

SPECIES
Merluccius capensis. juveniles
Merluccius capensis. female Trachurus capensis Herluccius capensis. male Total

CATCH/HOUR		\& OF TOT C	SAMP
Weight	numbers		
25.73	1200	78.45	657
3.60	67	10.98	656
1.87	53	5.70	658
1.60	27	4.88	655
32.80		100.01	

SPECIES
Merluccius capensis. female Merluccius capensis, male Merluccius capensis, juvenile

Total

CATCH/HOUR		B OF TOT. C	SAMP
weight	numbers		
49.20	376	62.40	660
27.20	232	34.50	659
2.40	148	3.04	66
0.04	20	0.05	
78.84		99.99	

Sorted: 578 kg Total catch: 97668 CATCH/HOUR: 195336

Total CATCH/HOUR \& OF TOT. C SAMP species
Trachyrincus scabrus
Nezumia sp Merluccius paradoxus, female Galeus poll
Lophius
Hoplostethus cadenat
Prachurus capensis, juvenile
Helicolenus dactylopterus
Lophius vaillanti
Epigonus telescopus Notacanthus sexspinis Ebinania costaecanarie Merluccius paradoxus. male Laemonema laureysi Epigonus denticulatus Aristeus varidens
Phrynichthys wedli

species
Trachyrincus scabrus
Merluccius paradoxus
Merluccius paradoxus, female
Merluccius capensis. female
Hoplostethus cadenati
Lophius vomerinus
Helicolenus dactylopterus
Todarodes sagittatus
Galeus polli
merluccius capensis, male
Ebinania costaecanarie
Raja leopardus
Merluccius paradoxus, male
Total

CATCH/HOUR weight numbers		- of tot	SAMP
585.00	3742	6594	
78.80	190	8.88	681
50.00	38	5.64	683
42.12	2088		
33.48	828	3.7%	
26.90	8	3.03	685
26.64	180	300	
15.48	36	1.74	
9.00	108	1.01	
7.30	4	0.82	686
6.60	6	074	684
3.24	72	0.37	
1.44	36	0.16	
0.82	2	0.09	682
0.36	36	0.04	
887.18		99.98	

PATE:23/5/94 GEAR TYPE: BT NO:7 POSITION:LATATION: 308
 $\begin{array}{llllll}\text { LOG } & : 3998: 40 & 3999.80 & 1.40\end{array}$ (min) Purpose code: $\quad \begin{array}{lll}\text { Area code } & \end{array}$ $\begin{array}{lrrll}\text { LOG : } & 3998.40 & 3999.80 & 1.40 & \text { Area code } \\ \text { FDEPTH: } & 300 & 297 & & \text { Gearcond code: } \\ \text { BDEPTH: } & 306 & 297 & & \text { Validity code: }\end{array}$ Towing dir: 70° wire out: 900 m Speed: $28 \mathrm{kn} \cdot 10$
Sorted: 106 kg Total catch: 137.13 CATCH/HOUR: 274.26

species

Merluccius capensis, female Pterothrissus belioci temal Merluccius capensis. Trigla lyra Todarodes sagittatus CRABS
Neoharriotta pinnata
Austroglossus microlepis Trachurus capensis
coelorinchus coelorhinc. polli Sufflogobius bibarbatus
Helicolenus dactylopterus Helicolenus dactylopterus Coelorinchus fasciatus Synagrops microlepis Etrumeus whiteheadi

Total

CATCH/HOUR weight numbers		8 Of TOT C	SAMP
95.90	280	34.97	698
53.20	394	19.40	
38.60	150	14.07	697
38.20	58	13.93	700
9.76	72	3.56	
9.44	28	3.44	
7.36	352	268	
5.52	160	2.01	
4.82	2	1.76	
3.36	16	1.23	
2.56	56	0.93	699
1.62	2	0.59	
1.12	48	0.41	
0.72	112	0.26	
0.64	48	0.23	
0.48	24	0.18	
0.40	96	0.15	
0.32	8	0.12	
0.24	8	0.09	
274.26		100.01	

species

Helicolenus dactylopterus
Merluccius capensis, female
Lophius vomerinus
Todarodes sagittatus
Merluccius paradoxus, temale
Hoplostethus cadenati
Merluccius capensis, male
Ebinania costaecanarie
Trachyrincus
Galeus polli
selachophidium guentheri Lophius vaillanti Neoharriotta pinnata Laemonema laureysi chlorophthalmus atlanticu Total

species
Pterothrissus be
Lophius vomerinus
Merluccius capensis, temal
Dentex macrophthalmus
Austroglossus microlepis
chlorophthalmus atlanticus
Galeus poll:
Trachurus capen
Hexanchus qrise
Hexanchus griseus
Todarodes sagittatus
Coelorinchus fasciatus
Synagrops microlepis
Coekorinchus coelorhinc. polli
Total

CATCH/HOU

CATCH/HOUR		8 Of tot C	SAmp
weight	numbers		
174.60	1136	27.64	
161.20	150	25.52	705
154,70	218	24.49	708
47.10	146	7.46	709
28.30	70	4.48	707
19.50	34	3.09	706
9.96	408	1.58	
8.88	240	1.41	
7.56	36	1.20	710
6.22	,		
5.84	12	0.92	
4.08	252	0.65	
2.40	420	0.38	
1.32	120	0.21	

100.01

species	CATCH/HOUR		8 Of tot	SAMP
	weight	numbers		
Merluccius capensis. female	806.20	840	56.03	713
Merluccius capensis, male	199.60	248	13.87	712
Helicolemus dactylopterus	172.56	2130	11.99	
Lophius vomerinus	121.40	78	844	711
Galeus polli	45.12	456	314	
Squalus megalops	2400	48	67	
Trachurus capensis	15. 12	720	1.05	715
Merluccius paradoxus, female	11. 50	46	0.80	714
Nezumia sp	8.64	504	0.60	
Ebinania costaecanarie	840	168	0.58	
Epigonus denticulatus	6.72	312	0.47	
chlorophthalmus atlanticus	5.04	168	0.35	
Todarodes sagittatus	488	8	0.34	
coelorinchus fasciatus	4.08	216	0.28	
Coelorinchus coelorhinc. polli	336	120	0.23	
portunidae	2.16	48	0.15	
Total	1438.78		99.99	

spectes	CATCH/HOUR		8 Of tot	SAMP
	weight	numbers		
Merluccius capensis. female	806.20	840		713
Merluccius capensis, male	199.60	248	13.87	712
Helicolemus dactylopterus	172.56	2130	11.99	
Lophius vomerinus	121.40	78	844	711
Galeus polli	45.12	456	${ }^{3} 14$	
Squalus megalops	2400	48	167	
Trachurus capensis	15.12	720	1.05	715
merluccius paradoxus. female	11. 50	46	0.80	714
Nezumia sp	8.64	504	0.60	
Ebinania costaecanarie	840	168	0.58	
Epigonus denticulatus	6.72	312	0.47	
Chlorophthalmus atlanticus	5.04	168	0.35	
Todarodes sagittatus	488	8	0.34	
coelorinchus fasciatus	4.08	216	0.28	
coelorinchus coelorhinc. polli	336	120	0.23	
portunidae	2.16	48	0.15	
Total	1438.78		99.99	

Total

species	CATCH/HOUR		of tot	
	weight	numbers		
Merluccius capensis. female	806.20	840	56.03	713
Merluccius capensis, male	199.60	248	13.87	712
Helicolenus dectylopterus	172.56	2130	11.99	
Lophius vomerinus	121.40	78	844	711
Galeus polli	45.12	456	14	
Squalus megalops	2400	48	67	
Trachurus capensis	15.12	720	05	715
Merluccius paradoxus, female	11.50	46	0.80	714
Nezuria sp	8.64	504	0.60	
Ebinania costaecanarie	840	168	0.58	
Epigonus denticulatus	6.72	312	0.47	
chlorophthalmus atlanticus	5.04	168	0.35	
Todarodes sagittatus	488	8	0.34	
coelorinchus fasciatus	4.08	216	0.28	
coelorinchus coelorhinc. polli	336	120	0.23	
portunidae	2.16	48	15	
Total	1438.78		99.99	


```
\(\begin{array}{lrrrl}\text { TIME } & : 4063.80 & 4065: 40 & 1.60 & \text { Areacode } \\ \text { FDEPTH: } & 455 & 450 & & \text { Gearcond code }\end{array}\)
```



```
Sorted: 205 kg Total catch: 394.03 CATCH/HOUR: 788.06
```

species
Merluccius paradoxus, femal
Trachyrincus scabrus
Deania calcea
helicolenus dactylopterus
ezumia sp
Galeus polli
ophius vomerinus
Ruvettus pretiosus
Todarodes sagittatus
merluccius capensis, female
Laemonema laureysi
Merluccius paradoxus, male
Merluccius paradoxus, male
Geryon maritae
arapenaeus longirostris
rrachurus capensis. juvenile
Epigonus telescopus
Total

CATCH/HOUR		8 OF TOT C	SAMP
331.10	644	42.01	717
129.00	1280	16.37	
109.00	20	13.83	
67.00	640	8.50	
37.60	1400		
24.80	520	3.15	
24.80	260	3.15	
17.60	10	2.23	
17.40	2	2.21	
860	16	1.09	
5.10	4	0.65	
3.96	2	0.50	718
3.20	40	0.41	
2.54	6	0.32	716
2.14	2	0.27	
1.80	640	0.23	
1.20	40	0.15	
0.42	14	0.05	719
0.40	20	0.05	
0.40	20	0.05	
78806		99.99	

species
Trachurus capensis
Dentex macropht halmus
Meriuccius capensis. femal
Merluccius capensis. femal
Merluccius capensis. male
Todarodes sagittatus
pterothrissus belloci
Merluccius capensis. male
Austroglossus microlepis
Merluccius capensis. juveniles
Total
 Sorted: 65 kg Total catch: 637.60 CATCH/HOUR: 1912.80
species
Dentex macrophthalmus
merluccius capensis. female synagrops microlepis Rajamiraletus
Trigla lyra Trachurus capensis PORTUNIDAE
Lophius vomerinus
Sufflogobius bibarbatus
Pterothrissus belloci
Total

Catch/hove		8 Of TOT	P
weight	numbers		
1170.00	7059	61.17	732
237.90	1755	12.44	730
175.50	1443	9.18	729
101.40	17118	5. 30	
65.91	78	3.45	
57.72	312	3.02	
40.80	66	2.13	728
18.33	156	0.96	731
17.94	1287	0.94	
11.70	15	0.61	726
8.97	1521	0.47	
4.68	39	0.24	
1.95	6	0.10	727
1912.80		100.01	

spectes	catch	gour	8 OF tot	SAMP
	weight	urnbers		
Merluctius capensis. female	2439.00	4182	42.23	733
Dentex macropht halmus	1325.60	5562	22.95	735
merluccius capensis, male	965.10	1998	16.71	734
Helicolenus dactylopterus	797.20	19468	13.80	
Galeus polli	48.40	926	0.84	
chlorophthalmus atlanticus	46.76	1422	0.81	
coelorinchus fasciatus	34.60	1936	0.60	
Hyperoglyphe moselis	27.18	42	0.47	
portunidae	26. 20	598	0.45	
synagrops microlepis	20.80	2780	0.36	
Pterothrissus belloci	18.74	82	0.32	
Trachurus capensis	10.70	62	0.19	737
Laemonema laureysí	6.38	164	011	
Coelorinchus coelorhinc polli	350	164	0.06	
Lophius vomerinus	274	2	0.05	736
OPHICHTHIDAE	206	20	0.04	
Total	5774.96			

Total

spectes

Trachyrincus scabrus Merluccius paradoxus, femal	
Raja confundens	
Merluccius capensis,	
Hoplostethus cadenati	
Alepocephalus sp	
	Merluccius polli. fe
Lophius vomerinus	
cragelz	
	Merluccius capensis ma
Etmopterus lucife	
CRAGEI 3	
Lophius vaillanti	
Ebinania costaecanarieHelicolenus dactylopterus	
Laemonema laureysi	
rajidae	
Galeus polli	
OPISTHOTEUTHIDAE	
	hodes fer

total

SpRecies
Trachurus capensis
Dentex macrophthalmus
Merluccius capensis. feriale
Pterothrissus belloci
Merluccius capensis, male
Helicolenus dact ylopterus
Merluccius capensis, female
Merluccius capensis, male
Rajaconfundens
Synagrops micropis
Lophius vomerinus
Total

Total -
$4850.24 \quad 100.01$

Species	CATCH/HOUR		8 Of tot. C	SAMP
Merluccius capensis, female	werght 433160	unber 3920	69.30	785
Merluccius capensis, male	474.32	510	7.77	786
Helicalerus dactylopterus	463.60	2396	7.59	
Galeus polli	310.60	3352	5.09	
Squalus megaiops	109.76	196	1.80	
Coelorinchus fasciatus	81.00	1686	1.33	
Laemonema laureysi	80.94	824	1.33	
S Hark S	73.50	40	1.20	
Lophius vaillanti	70.22	20	1.15	784
Lophius vomerinus	55.92	22	0.92	783
Rajidae	42.52	20	0.70	
Hexanchus griseus	32.00	2	0.52	
Dentex macrophthalmus	26.66	78	0.44	787
Nezumia sp.	21.16	1078	0.35	
coloconger scholesi	17.80	20	0.29	
Malacocephalus laevis	7.24	58	0.12	
Ebinania costaecanarie	4.32	40	0.07	
Epigonus telescopus	176	40	003	
portunidae	058	20	0.01	
Epigonus denticulatus	0.38	20	0.01	
Total	610588		100.02	

Sorted: 319 kg Total catch: 2631.09 CATCH/HOUR: 5262.18
species
Merluccius capensis, fema
Squalus megalops
Merluccius capensis. mal
Helicolenus dactylopteru
Dentex macrophthalmus
Trachurus capensis
Laemonema laureysi
Raja leopardu
Hyperoqlyphe moselii
Coelorinchus fasciatus PORTUNIDAE
chlorophthalmus atlanticus
Total

CATCH/HOUR			
weight	numbers	OF TOT. C	SAMP
1971.20	2820	37.46	788
1018.40	3324	19.35	
764.28	1278	14.52	789
525.60	49796	9.99	
463.30	1526	8.80	790
218.20	968	4.15	791
105.94	1362	2.01	
62.48	50	1.19	
42.32	442	0.80	
41.00	82	078	
30.34	754	0.58	
9.02	164	0.17	
7.06	114	0.13	
3.30	16	0.06	
5262.44		99.99	

species
Merluccius capensis, temale
Trachurus capensis
Merluccius capensis. male
Dentex macrophthal mus
pterothrissus belloc
Squalus megalops
Chlorophthalmus at lanticus
Helicolenus dactylopterus
Synagrops microlepis
portunidae
Merluccius polli. juveniles Aristeus varidens
rotal

CATCH/HOUR		Q of tot c	SAMP
1981.60	4018	46.73	792
793.08	8324	18.70	795
423.16	1832	9.98	793
376.30	1946	887	794
284,70	1704	671	
186.00	802	4.39	
149.82	3892	3.53	
105.78	1818	2.49	
71.28	12176	168	
4.82	212	0.11	
2.12	28	0.05	
0.86	14	0.02	
0.72	116	0.02	
4380.24		103.28	

Total

CATCH/HOUR weiqht numbers		8 OF TOT	SAMP
2958. 30	27459	69.84	798
506.25	1143	11.95	197
136.80	456	3.23	
131.10	1140	3.10	799
117.90	327	2.78	796
103.74	1482	2.45	
101.46	3420	2.40	
80.94	13680	1.91	
53.58	342	1.26	
31.92	912	0.75	800
13.68	342	0.32	801
4235.67		99.99	


```
\(\begin{array}{llllll}\text { TIME }: 19: 36: 00 & 20: 06: 00 & 30 & \text { stan) } & \text { (min) } & \text { Purpose code: } \\ \text { LOG } & : 4282.80 & 4284.20 & 1.40 & \text { Area code } & 3\end{array}\)
```



```
SEPTH: Towing dir: \(170^{\circ}\) wire out : 1400 m Vpeed 28 kn*
    Sorted: 453 Kg Total catch: 152900 CATCH/HOUR: 3058.00
```


Species
Dentex macrophthalimus
Trachurus capensis
Merluccius capensis, female
Pterothrissus belloci
Merluccius capensis. male
Merluccius capensis, female
synaqiops microlepis
Raja miraletus
Merluccius capensis, male
Lophius vomerinus
Sufflogobius bibarbatus
Chatrabus melanurus
Total

CATCH/hOUR		8 OF TOT C	SAMP
weight	nunbers		
594.64	3343	31.43	832
57536	4243	30.41	831
206.36	1607	10.91	830
125.36	2314	6.62	
113.14	1157	598	829
99.21	219	5.24	828
70.07	8633	370	
52.71	64	279	
28.93	81	1.53	827
17.44	17		826
5.14	1093	0.27	
3.86	64	0.20	
1892.22		100.00	


```
    Sorted: 269 kg Total catch: 2192.85 CATCH/HOUR: 4385.70
```


Catch/hour		Of TOT.	SAMP
weight	numbers		
2207.40	2416	50.33	836
528.60	18198	12.05	
424.80	1030	9.69	835
400.20	42718	9.13	
327.60	1098	7.47	837
250.00	5292	5.70	
179.80	692	4.10	838
19.40	540	0.44	
13.52	744	031	
13.36	14	- 30	833
12.32	198	0.28	
890	4		834
438590		100.00	

species
Merluccius capensis, female
Merluccius capensis, male
Helicolenus dactylopterus
Galeus potli
Chlorophthalmus atlanticus
Coelorinchus tasciatus
portuidaE
Lophius vaillanti
Nezuma sp
Lopinius vomerinus
Laemonema taureysi
Coelorinchus coelorhinc poll
Notacanhus sexspinis
Merluccius paradoxus, female

Merluccius paradoxus. female
Total

CATCH/HOUR weight numbers		\& of tot. C	SAmp
649.90	1442	4844	846
199.10	2546	14.84	
13926	1276	10.38	
91.90	90	6.85	844
55.44	2112	4.13	
43.12	506	3.21	
36.74	880	2.74	
31.04	24	2.31	848
23.22	14	1. 73	849
16. 28	66	1.21	
15.18	22	1.13	
11.44	34	0.85	847
8.90	10	0.66	845
748	396	0.56	
638	44	0.48	
3.30	528	0.25	
1. 32	318	0.10	
088	22	0.07	
0.66	22	005	
1341.54		99.99	

spectes	CATCh/HOUR		- of ror	SAMP
	weight	nunbers		
Trachyrincus scabrus	48100	1828	35.91	
Dearia calcea	188.24	156	14.05	
Nezumia sp.	183.04	6188		
Raja caudaspinosa	151.32	400	11.30	
al epocephalidae	132.00	986	9.86	
Merluccius paradoxus, female	124.36	128	29	850
Notacanthus sexspinis	22.36	260	67	
Galeus polli	19.76	260	1.48	
Laemonema laureysi	6.24	156	0.47	
Lophius vaillant	5.74	2	043	854
Geryon maritae	5.20	52	039	
Plesionika sp	5. 20	1976		
Lophius vomerinus		2	0.32	853
Merluccius paradoxus. male	412	6	031	851
OPhichthidae	2.60	104		
merluccius polli, female	1.68	2	0.13	852
lamprogrammus exutus		52	008	
Phrynichthys wedil	0.52	52	0.04	
Hoplostethus caderiati	052	52	04	
Aristens varídens	0.06	60		

spectes	СатCh/hour		8 Of tot c	SAMP
	weight	numbers		
Trachyrincus scabrus	485.80	2044		
Merluccius paradoxus. female	175.70	194	20.08	862
Nezumia sp.	52.64	2772	6.02	
Lophius vomerinus	38.80	16	4.43	860
Lophius vaillanti	35.90	12	4.10	861
Raja confundens	28.00	168	3.20	
Alepocephalus sp	18.20	28	208	
Selachophidium quentheri	6.44	140	0.74	
Galeus polli	4.76	56	0.54	
Lamprogramnus exutus	4.76	28	0.54	
Hoplostethus cadenati	4.20	532	0.48	
merluccius paradoxus. male	3. 84	4	0.44	863
cracel2	3. 70	10	0.42	865
Raja leopardus	3. 36	56	0.38	
Merluccius polli, female	3.30	4	0.38	864
Yarrella blackfordi	2.52	280	0.29	
Notacanthus sexspinis	1.40	28	0.16	
craceis	1. 20	8	0.14	866
Plesionika sp.	0.56	${ }^{84}$		
Total	875.08		99.99	

DATE: 26						roject stat	ION	339
	6/5/94		gear type:	Bt No: 7	Posi	Ition:lat	s	1909
	start	stop	duration			Long	E	1125
TIME :	:20:18:00	20:48:00	30 (min)	Purpose c	:	3		
Log :4	:4420.70	4422.10	1.60	Area code		3		
FDEPTH:BDEPTH:	500	497		Gearcond	de:			
	500	497		validity	de:			
BDEPTH:	Towing	355°	wire out: 140	0 m spee	29	$\mathrm{kn*10}$		

```
species
Merluccius paradoxus, female
Trachyríncus scabrus
Nezumia sp
ophius vomerinus
aemonema laureysi
Helicolenus dactylopterus
Todarodes sagittatus
Raja confundens
ophius vaillanti
Gamopterus polli
Selachophidium guenther;
Total
```

CATCH/HOUR		- of tot	SAMP
weight	numbers		
1154.10	2190	72.05	868
291.60	1740	18.20	
39.72	1224	2.48	
22.70	18	1.42	869
20.16	216	1. 26	
18.90	42	1.18	867
13.44	72	0.84	
12.60	24	0.79	
12.00	72	0.75	
11.28	6	0.70	870
3.84	12	0.24	
0.96	12	0.06	
0.60	12	0.04	
160190		100.01	

Sorted: 242 kg Total catch: 1060.77 CATCH/HOUR: 2121.54

spectes	CATCH/HOUR		Of TOT	AMP
	weight	numbers		
Merluccius capensis. female	901.20	1414	42.48	876
chlorophthalmus atianticus	471.70	14798	22.23	
Merluccius capensis, male	33454	748	15.77	877
Helicolenus dactylopterus	21240	5818	10.01	
galeus polli	81.70	1522	3.85	
Trachurus capensis	41.70	84	1.97	878
Lophius vomerinus	35.66	30	1.68	879
Coelorinchus coelorhinc. polli	15.74	800	0.74	
Dentex macrophthalmus	15.74	34	0.74	880
portunidae	756	266	0.36	
Todarodes sagittatus	3.34	8	0.16	
scopelosaurus meadi	0.26	34	0.01	
Total	2121.54		100.00	

SPECIES
Meriuccius capensis, female
Trachurus capensis
Synagrops microlepis
Dentex macrophthalmus
Merluccius capensis, male
Perothrissus belloci
Galeus polli
Lophius vomerinus
Coelorinchus fasciatus
Chiorophthalmus atlanticus
Todarodes saqittatus
Austroglossus microlepis
Portunidas
Genypterus capensis
Total

species
Dentex macrophthalmus
Merluccius capensis, female
Trachurus capensis
Merluccius capensis, male
Pterothrissus belloci Galeus polli
Synagrops microlepis
sufflogobius bibarbatus
Total

CATCH/HOUR		- Of tot c	SAMP
weight	numbers		
182.50	825	31.25	891
171.13	620	29.30	888
109.38	650	18. 73	89
85.13	475	14.58	889
15.75	213	2.70	
15.13	413	2.59	
4.75	1100	0.81	
0.25	75	0.04	

SPECIES
Dentex macrophthalmus
Trachurus capensis
Merluccius capensis. female
Merluccius capensis, male
Mer inccius capensis,
Pterothrissus belloci
Austroglossus micralepis
tophius vomerinus
Total


```
DATE: \(28 / 5 / 94\) GEAR TYPE: BT NO: 7 POSITION:LAT STATION: 3036
TIME 08.29 .00 stap duration \(08: 59.00\) purpose code:
\(\begin{array}{llllll}\text { TIME } & \text { : 08:29:00 } & 08: 59: 00 & 30 & (\mathrm{~min}) & \begin{array}{l}\text { Purpose code: } \\ \text { Area code }\end{array} \\ \text { LOG } & 4609.60 & 4611.20 & 160 & & \end{array}\)
\(\begin{array}{lrrrl}\text { LOG }: 4609.60 & 4611.20 & 1.60 & \text { Area code } \\ \text { FDEPTH: } & 485 & 472 \\ \text { BDEPTH: } & 485 & 472 & & \text { Gearcond code } \\ \text { Validity code }\end{array}\)
Towing dir: \(345^{\circ}\) wire out : 1350 m Speed: \(32 \mathrm{kn} * 10\)
    Sorted: 25 kg Total catch: 429.20 CATCH/HOUR: 858.40
```

spectes
Trachyrincus scabrus
rachyrincus scabrus
Neoharriotta pinnata
merluccius paradoxus. female
ezumia sp
oplostethus cadenati
ophius vomerimus
Tetragonurus cuvieri
Epigonus denticulatus
rotal

| CATCH/HOUR | | | |
| ---: | ---: | ---: | ---: | OF TOT C SAM


```
    Sorted: 236 kg Total catch: 395.85 CATCH/HOUR: 791.70
```

species
Merluccius capensis, female
Trachyrincus scabrus
Merluccius capensis. male
Nezumia sp
Helicolenus dactylopterus
Selachophidium guentheri
Lophius vomerinus
Todarodes sagittatus
Deania calcea
Coellorinchus sp.
Ebinania costaecanarie
Laemonema lauresi
Aristeus varidens
Galeus polli
Lophius vailianti
Epigons telescopus
Hoplostethus cadenati
Chlorphthalmus atlanticus
Meriuccius paradoxus. female
Synagrops microlepis
Epigonus denticulatus
Total

CATCH/HOUR			
weight	numbers	OF TOT. C	SAMP
339.30	188	42.86	904
124.20	1130	15.69	
69.50	46	8.78	905
60.12	4934	7.59	
47.88	684	5.05	
30.42	1152	3.84	
20.20	28	2.55	907
16.36	36	2.32	
17.28	36	2.18	
15.84	468	2.00	
10.80	126	1.36	
9.36	108	1.18	
7.20	2610	0.91	
7.02	108	0.89	
3.44	2	0.43	921
2.88	72	0.36	
1.98	198	0.25	
1.44	54	0.18	
0.88	6	0.11	906
0.18	18	0.02	
0.18	36	0.02	
788.46		99.57	

Species	CATCH/hOUR		8 Of tot	samp
	weight	bers		
Merluccius capensis. female	372.04	454	51.05	908
Merluccius capensis, male	128.00	220	17.56	909
Deepwater fish mixture	60.96			
Trachurus capensis	59.20	432	8.12	913
Todarodes sagittatus	28.00	80	3.84	
Pterothrissus belloci	20.96	216	2.88	
Galeus polli	19.04	336	2.61	
Lophius vomerinus	14.96	14	205	912
Coelorinchus fasciatus	11. 84	336	1.62	
Squalus megalops	10.32	16	1.42	
chlorophthalmus atlanticus	1.28	136	0.18	
Austrogiossus microlepis	1.22	4	0.17	910
Genypterus capensis	0.46	2	0.06	911
Nezumia sp	0.32	24	0.04	
Portunidae	0.16	24	02	
Total	728.76		9998	

CATCH/HOUR			
weight	OF TOT	C	SAMP
158.10	1124	31.09	917
146.90	1066	28.89	918
84.00	672	16.52	920
75.60	70	14.87	914
22.88	136	4.50	
12.00	B	2.36	
3.60	16	0.71	
3.52	8	0.69	919
0.80	4	0.16	915
0.70	4	0.14	916
0.40	136	0.08	
508.50		-100.01	


```
start stop duration
```



```
\(\begin{array}{rrrrr}\text { LOG } & 4649.80 & 465180 & 2.00 & \text { Area code } \\ \text { FDEPTH: } & 271 & 267 & & \text { Gearcond code: }\end{array}\)
BDEPTH: \(\begin{gathered}271 \\ \text { Towing dif: } \quad 350^{\circ}\end{gathered}\) wire out: \(\begin{gathered}\text { Validity code: } \\ 900 \mathrm{~m} \text { Speed: } 35 \mathrm{kn} 10\end{gathered}\)
    sorted: 107 Kg Total catch: 416.44 CATCH/HOUR: B32.88
```

species
Merluccius capensis.
Dentex macrophthalmus
Merluccius capensis, male
Merluccius capensis, female Pterothrissus belloc
Sufflogobius bibarbatus
Todarodes sagittatus
Merluccius capensis. male
merluccius capensis. 品价eniles
Lophius vomerinus
Austroglossus microlepis Galeus poll

Total

SPECIES
Trachurus capensis
Merluccius capensis. female
Merluccius capensis, male
Merluccius capensis, juveniles
Dentex macrophthalmus
Lophius vonerinus
Merluccius capensis, female
Suflogobius ibarbatus
Pterothrissus belloci

CATCH/HOUR		8 OF TO	SAMP
weight.	numbers		
906.00	9952	72.79	936
135.00	1188	10.85	935
104.40	1236	8. 39	934
62.40	4172	5.01	93
17.40	72	140	937
B. 24	10	0.66	93
5.50	6	0.44	932
3.36	768	0.27	
2.40	24	0.19	

CATCH/hour		8 OF Tot. C	SAMP
weight	numbers		
320.46	732	43.38	938
141.90	384	19.21	939
63.40	164	8.58	941
56.40	180	7.63	944
47.48	34	6.43	940
31.50	144	4.26	
16.56		2.24	
16.00	44	2.17	
15.06	36	2.04	
14.76	720	2.00	
5.82	180	0.79	
3.34	10	0.45	942
2.40	420	032	
2.22	30	0.30	
1.26	66	0.17	943
0.24	6	0.03	
738.80		10000	

species
terluccius capensis. female herluccius capensis, male chlorophthalmus atlanticus deepwater fish mixture
Trachurus capensis
Todius vomerinus sagittatus
centrolophus niger
Coelorinchus coelorhine polli
Helicolenus dactylopterus
squalus megalops
Galeus pollif
Nezumia sp
Dentex macrophthalmus
Austrogiossus microlepis
epigonus denticulatus
Total

CATCH	/HOUR	- of tot	samp
weight	numbers		
647.40	876	57.10	947
171.00	300	15.08	948
68.40	366	6.03	951
64.50	2594	5.69	
37.86		3.34	
29.10	84	2.57	949
29.00	44	2.56	946
25.80	126	2.28	
19.90	6	1.76	
10.86	420	0.96	
7.26	192	0.64	
5.46	6	0.48	
4.80	72	0.42	
3.42	42	0.30	
264	144	0.23	
1.98	6	0.17	950
1.90	6	0.17	945
1.50	6	0.13	
0.96	24	0.08	
1133.74		99.99	

ROject Station: 354
 Sorted: 265 Kg Total catch: 425.75 CATCH/HOUR: 851.50

Total
SPECIES
Merluccius capensis, female Helicolenus dactylopterus
Merluccius capensis. male Todarodes sagittatus male Merluccius paradoxus, female Trachurus capensis
Lophius vomerinus Lophius vomerinus
Squalus megaiops coelorinchus fascia Nezumia sp.
Galeus polli centrolophus niger
Laemonema
Epigonus denticulatus
Chlorophthalmus atlanticus
Epigonus telescopus

Sorted: 180 kg Total catch: 341.98 CATCH/HOUR: 68396

Trachyrincus scabrus
Merluccius capensis, female Helicolenus dactylopterus
Nezumia sp.
Genypterus capensis
Lophius vaillant i
Merluccius capensis. male
RAJIDAE
Lophius vomerinus
Galeus polli
Plesionika sp
Merluccius paradoxus, male
portundide
Laemonema laureysi
Todarodes sagittatus
Ebinania costaecanarie
Total

catch	Hour	8 OF TOT C	AM
weight	numbers		
231.00	2318	33.77	
145.82	70	21.32	96
91.68	158	13.40	97
42.20	260	6.17	
42.00	1820	6.14	
25.94	12	3.79	97
23.60	2	3. 45	97
22.20	14	3.25	97
21.20	354	3.10	
12.98	14	1.90	97
5.20	60	0.76	
5.00	1400	0.73	
3.94	6	0.58	97
3.20	40	0.47	
3.00	80	0.44	
2.80	20	0.41	
1.40	20	0.20	
0.80	20	012	
683.96		100.00	

$\begin{array}{rrrrr}\text { EOG } & : 4775: 100 & 4776 & 50 & 140 \\ \text { FDEPTH: } & 600 & 600 & & \begin{array}{l}\text { Area code } \\ \text { Gearcond code }\end{array}\end{array}$

Sorted: 104 kg Total catch: 424.67 CATCH/HOUR: 84934

CATCH/HOUR		- of tot	SAMP
weight	numbers		
357.00	810	42.03	
157.10	172	18.50	976
135.90	6136	16.00	
95.70	5358	11.27	
36.90	30	4.34	
18.90	30	2.23	
15.00	930	1.77	
12.30	30	1.45	
6.30	60	0.74	
3.80	6	0.45	977
3.30	30	0.39	
2.10	90	0.25	
1.74	2	0.20	
1.50	150	0.18	
0.90	90	0,11	
0.90	30	0.11	
849,34		100.02	


```
species
Trachurus capensi
Lophius vomerinus
merluccius capensis, male
Merluccius capensis. ;uveniles
LOPHIMDAE
Sufflogobjus bibarbatus
Total
```

СатСh/hour		8 Of tot	SAMP
weight	numbers		
807100	165830	65.10	995
143840	2608	1160	996
138340	15928	11.16	994
1026.46	12906	8. 28	993
42080	24000	339	997
54.20	1028	0.44	
3.44	1032	0.03	
239770		000	

Annex IV Instruments and fishing gear used

Acoustic instruments

The SIMRAD EK500/38 KHZ scientific sounder was used during the survey for estimation of fish density. The EK500 has a built- in digital echo integrator, but the Bergen Echo Integrator system (BEI) was used throughout the survey. The details of the instrument settings are as follows:

Transceiver settings:

Bandwidth	Wide (3.8 KHz)
Pulse length	Medium (1 ms)
Max Power	2000 Watt
Sv Transducer gain	27.8 dB
Ts Transducer gain	28.1 dB

Printer settings:

Range	$0-100$ or $0-250 \mathrm{~m}$
TVG	$20 \log \mathrm{R}$
TS Colour min	-50 dB
Sv Colour min	-64 dB

An ES38B with a $6.8^{\circ}-3 \mathrm{~dB}$ beamwith transducer was used for integration.

A calibration experiment using a standard copper sphere, performed in Baia dos Tigres 23/2 1994 gave the following results: Sv Transducer gain 27.8 dB , Ts Transducer gain 28.1 dB .

Glossary:

Sv Transducer gain: Peak transducer gain assumed during computation of volume backscattering strength.

Ts Transducer gain: Peak transducer gain assumed during computation of target strength.

Ts Colour min: Lower limit of colour scale relative to target strength.

Sv Colour min: Lower limit of colour scale relative to volume back scattering.

Hydrography

Conductivity, temperature, density and oxygen were sampled regularly at CTD stations with a Seabird CTD-sonde. The salinity was calculated by a computer.

Fishing gear

The vessel has two different sized 'Åkrahamn' pelagic trawls and one Gisund super bottom trawl. Only the bottom trawl was used during the survey.

The bottom trawl has a headline of 31 m , footrope 47 m and 20 mm meshsize in the codend with an innernet of 10 mm meshsize. The estimated headline height is 5 m and distance between the wings during towing about 18 m . The trawl is equipped with a $12^{\prime \prime}$ rubber bobbins gear and $6 \mathrm{~m}^{2}, 1500 \mathrm{~kg}$ 'Egersund' combi-doors. The sweeps are 40 m long.

The following drawings show the size of these trawls.

.

Annex \mathbf{V} Work note on recruitment variations in the Namibian stock of Cape hake.

by Gunnar Sætersdal

It is important to be able to evaluate the levels of recruitment observed in recent years in the light of information from the history of the previous fisheries on the Cape hake stock especially since it is a general experience that recruitment from hakes and other cod like fishes may fluctuate considerably from year to year and between periods. In this brief note the RV 'Dr. Fridtjof Nansen' data will be compared with the results of a series of Spanish surveys and with those of a VPA analysis of fishery - and biological data collected through ICSEAF.

All survey results agree in showing distinct cohorts which can be followed up to a size well over 30 cm . The main spawning is assumed to take place in August-September (Sedleskaya, 1988). The 0 -group is still mainly pelagic in January-March with a size of $10-12 \mathrm{~cm}$, the cohort is 20 25 cm at 1.5 to 2 years of age and about 30 cm at $2.5-3$ years of age. The growth rate is likely to be density dependent with lower growth for abundant cohorts.

Table 1 shows estimates of the strength of the yearclasses 1988-1992 from the RV 'Dr. Fridtjof Nansen' surveys 1990-1994 (Anon 1994a). These represent numerical abundance of cohorts at 1.5-2 years of age. The estimates vary greatly between yearclasses, from 0.3 to 4.9 billion, but also between estimates of the same yearclass from different surveys. Especially notable is this for the 1991 yearclass where the estimate declined from 4.9 billion in November-December 1992 to 2.2 billion in February-March 1993. This decline was observed mainly in the Central Region and is thought to have been associated with the phenomenon of mass fish mortality which occur periodically in the Walvis Bay region (Copenhagen et al. 1953). Ignoring this high estimate 4 out of the 5 yearclasses investigated show estimates of approximately 2 billion fish. It is important to know whether this represents a high, average or low level of recruitment to the stock. In absolute terms these data may be affected by bias related to the swept area method on which they are based, but they should represent comparable indices.

Table 1 Estimates of strength of recent yearclasses of Cape hake. Cohort population numbers at about two years of age								
for the groups assumed to have been spawned in 1988, 1989, 1990, 1991 and 1992. Millions of fish.								
Yearclass	1988	1989	1990	1990	1991	1991	1991	1992
Southern region	980	100	160	300	990	670	390	250
Central region	1320	170	1710	1620	3500	1230	1370	1880
Northern region	10	10	20	240	440	270	130	70
Total	2310	280	1890	2160	4930	2170	1890	2200
Survey/Year	$1 / 90$	$1 / 91$	$2 / 91$	$1 / 92$	$2 / 92$	$1 / 93$	$2 / 93$	$1 / 94$

A set of data similar to that of the RV 'Dr. Fridtjof Nansen' is available from the Spanish Benguela surveys which covered the period 1983 to 1988 with annual or biannual coverages in JanuaryFebruary and July-August, (Macpherson et al, 1984, 1985, 1986, 1987 and Gordoa and Macpherson 1988). Table 2 reviews these data which cover the yearclasses 1981 to 1986. In identifying the cohorts use has been made of the growth pattern described above resulting in some disagreements with the identification made by the authors. The simple mean of all estimates at ages from 1.5 to 3 years will be negatively biased when compared with the RV 'Dr. Fridtjof Nansen' estimates at 1.5 to 2 years of age.

Table 2	Strength of yearclasses 1981-1986. Estimates based on Spanish trawl survey data 1983-1989. Number of fish in billion.						
	Yearclass						
	1981	1982	1983	1984	1985	1986	
At 1.5-2 years	3.4	$4.0,7.0$	1.3	$3.0,4.7$	0.6	0.1	
At 2.5-3 years	$5.4,2.2$	2.0	$4.7,5.0$	1.0	$0.6,0.8$		
Simple mean	3.7	4.6	3.7	2.9	0.7	0.1	
Plus 25%	4.6	5.8	4.6	3.6	0.9	0.1	

There is also a negative bias caused by an incomplete coverage of the Spanish surveys which did not include the shelf north of $23^{\circ} \mathrm{S}$, Walvis Bay. (This area was to be covered by a Soviet survey programme which does not seem to have materialized). As shown in Table 1 the Central and Southern Regions were the main areas of recruitment for the Cape hake and this is likely to be a general pattern of distribution. A rough assessment of the RV 'Dr. Fridtjof Nansen' data indicates that on average about $3 / 4$ of the 1.5 to 2 year old fish is found on the shelf south of Walvis Bay. The Spanish estimates should thus be increased by 25%.

Whether these estimates are directly comparable to those of the RV 'Dr. Fridtjof Nansen' could only have been properly checked by comparative fishing experiments. The estimated effective fishing width of the Spanish trawl gear was first reported to be 15.7 m (Macpherson et al, 1985), but in a later communication referred to as 18.3 m (Macpherson, personal communication 1990). On the basis of the trawl design a fishing gear expert assessed the width to be 20 m . (Bill West, IMR internal memorandum). There is thus some uncertainty regarding the effective fishing width of the spanish trawl, but it is anyhow not very different from the 18.5 m estimated for the RV 'Dr. Fridtjof Nansen' trawl.

The resulting totals range from 0.1 to 5.8 billion and compared with the RV 'Dr. Fridtjof Nansen' data they show recruitment in the early 1980s to have been more than the double of the 2 billion
level of recent years. The high recruitment from that period is well known from the history of the fishery and was especially ascribed to the yearclasses 1982 and 1983. The Spanish data show high recruitment also from the adjoining 1981 and 1984 yearclasses. This may, however, partly be an effect of "overflow" from the abundant cohorts 1982 and 1983 through the use of age length keys.

VPA analyses from the ICSEAF period represent a further source of historical information on recruitment in this stock. Table 3 shows recruitment estimates of a VPA analysis including data up till 1985 from Schumacher (1988). Natural mortalities incorporate estimates of cannibalism.

Table 3 VPA, Cape hakes, Divisions in millions. (Source:Schumacher (1988), Table 1.)					
	5178	1974	4308	1980	1408
	4481	1975	2776	1981	2218
	5877	1976	2408	1982	4836
	2801	1977	2286	1983	5315
	1989	1978	1046	1984	1874
	3308	1979	879	1985	2303

Under the ICSEAF system the Namibian hake stocks were considered as two management units, one covering Division 1.3 and 1.4 and one for the shelf south of $25^{\circ} \mathrm{S}$, the Division 1.5. Catches were only identified to species in research vessel surveys. In order to be comparable with the recruitment estimates from the RV 'Dr. Fridtjof Nansen' surveys, the VPA should have excluded the deep water hake caught in Divisions 1.3 and 1.4 and included the Cape hake catches in Division 1.5. Data on the proportion of the fishable biomass of the two species by regions is available for recent years from the RV 'Dr. Fridtjof Nansen' surveys (Anon, 1994,b) and show the following:

Table 4. Mean fishable biomass of Cape hake and deep water hake by regions. Data from 7 surveys 1991-1994.		
Southern region		
Cape hake	102000	tonnes
Deep water hake	104000	
Central region		
Cape hake	111000	tonnes
Deep water hake	17000	"
Northern region		
Cape hake	114000	
Deep water hake	5000	

In this period half the biomass in the Southern region which corresponds to Division 1.5 was Cape hake, while deep water hake was only 9% of the biomass north of $25^{\circ} \mathrm{S}$. These proportions may change between periods, but the Spanish surveys 1983-1988 showed an average proportion of 31% of deep water hake of a total mean biomass of 960000 tonnes south of $23^{\circ} \mathrm{S}$ which could well indicate a $50 / 50$ proportion south of $25^{\circ} \mathrm{S}$ (Gordoa et al, 1988). The reported geographical distribution of catch rates in these surveys showed only insignificant rates of deep water hake north of $25^{\circ} \mathrm{S}$.

The mean of the reported hake catches in the VPA period 1968-1985 is 290000 tonnes and 178000 tonnes for Divisions $1.3+1.4$ and 1.5 respectively. Use of the biomass proportions from the RV 'Dr. Fridtjof Nansen' surveys gives a mean Cape hake catch in this period of 353000 tonnes. It thus seems reasonable to assume that the VPA based on the Division 1.3+1.4 data underestimate the recruitment to the total Cape hake stock by about 20 per cent.

The VPA estimates may also be negatively biased if catches have been underreported as has some times been claimed for periods of this fishery.

A comparison with the Spanish series for the early 1980s shows high recruitment for both sets of data in this period. But the mean yearclass strength 1981-1984 is considerably lower in the VPA series: 3.7 billion against 4.7 billion for the Spanish data which tend to confirm the existence of a negative bias in the VPA.

These three sets of recruitment estimates may be linked up. The methodical basis for the RV 'Dr. Fridtjof Nansen' data is the same as that of the Spanish series. Although a difference in bias can not be excluded it is not likely to be substantial. There is a good correspondence between the estimates from the Spanish surveys in the early 1980s and those of the VPA especially if it is assumed that the VPA underestimates the total Cape hake recruitment. There is thus a basis for considering the VPA and the RV 'Dr. Fridtjof Nansen' data as a time series in which the following periods can be described with recruitment in billion fish:

| 1968-1974 | Generally high recruitment | Range 2.0-5.9 | Mean | 4.0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1975-1980 | Low to moderate recruitment | Range $0.9-2.8$ | Mean | 1.8 |
| 1981-1985 | Moderate to high recruitment | Range 1.9-5.3 | Mean | 3.3 |
| 1988-1992 | Low to moderate recruitment | Range $0.3-2.3$ | Mean | 1.8 |

There may be evidence of a spawning stock-recruitment relationship in the history of this stock. The severely depleted stock in the late 1970s produced the weakest yearclasses of the VPA series.

Otherwise yearclass strength seems to vary apparently stochastically within a range of six times or more. In similarity with many Gadid species which demonstrate comparable patterns of yearclass fluctuations it must be inferred that yearclass strength in the Cape hake is initially determined at an early stage by the survival success of larvae or post larvae, but may later be modified by phenomenon of mass mortality and by cannibalism.

Against this historical background the predominant recruitment levels of about 2 billion for the 1988 to 1992 yearclasses must be assessed as moderate. The estimate of nearly 5 billion for the 1991 yearclass in survey $2 / 1992$ is at the level of previous high recruitment years and confirms the high reproductive capacity of the stock.

An additional conclusion is that more comprehensive pre-recruit and recruitment studies should be given high priority.

REFERENCES

Abello,P., A.Gordoa, M.Manrique, M.Maso and E. Macpherson, 1988. Biomass indices and recruitment levels for hake andf other commercial species in ICSEAF Divisions 1.4 and 1.5: results from the Spanish Benguela XI research cruise (1987). Colln scient.Pap.int.Commn SE.Atl.Fish. 15(I):7-21

Anon, 1994a. Surveys of the fish resources of Namibia. Preliminary Cruise Report "Dr Fridtjof Nansen" Survey 1/94. Ministry of Fisheries and Marine Resources, Swakopmund, Institute of Marine Research, Bergen

Anon, 1994b. Surveys of the fish resources of Namibia. Preliminary Cruise Report "Dr Fridtjof Nansen" Survey 2/94. Ministry of Fisheries and Marine Resources, Swakopmund, Institute of Marine Research, Bergen

Copenhagen, W.J. 1953. The periodic Mortality of Fish in the Walvis Region. A Phenomenon within the Benguela Current. Department of Commerce and Industries, Division of Fisheries. Investigational Report No 14.RSA.

Gordoa, A. and E.Macpherson, 1988. Biomass indices and recruitment levels for hake and other commercial species in ICSEAF Divisions 1.4 and 1.5, from the surveys made in 1988, ICSEAF Eight Special Meeting, SAC/88/S.P./44

Macpherson, E., B.Roel and B.Morales, 1985. Reclutamiento de la merluza y abundancia y distribucion de diferentes especies comerciales en las Divisiones 1.4 y 1.5 durante 19831984. Colln scient.pap.int.Commn SE.Atl.Fish. 12(II):1-62

Macpherson, E., B.Roel and B.Morales, 1986. Evolucion del reclutamiento de la merluza y distribucion y abundancia de varias especies comerciales en 1985 en las Divisiones 1.4 y 1.5. Colln scient.pap.int.Commn SE.Atl.Fish. 13(II):113-136

Macpherson, E., B.Roel and B.Morales, 1987. Indices de biomasa y niveles de reclutamiento de la merluza y otras especies comerciales en las Divisiones 1.4 y 1.5 a partir de los resultados obtenidos en las campanas de 1986. Colln scient.pap.int.Commn SE.Atl.Fish. 14(II):55-112

Schumacher, A. 1988. Validation study on calibrating virtual population analysis (VPA) for the Cape hake stock in ICSEAF Divisions 1.3 and 1.4. Colln scient.pap.int.Commn SE.Atl.Fish. 15(II):197-213

Sedletskaya, V.A., 1988. Reproduction of Cape hake (Merluccuis m. capensis) and Cape horse mackerel (Trachurus t. capensis) in Namibia. Colln scient.Pap.int.Commn SE.Atl.Fish. 15(II):215-222

PART III

SURVEY OF THE PELAGIC STOCKS
1 June - 23 June 1994

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1
1.1 Objectives 1
1.2 Participation 2
1.3 Schedule 2
CHAPTER 2 METHODS 3
2.1 Hydrographic and Plankton Sampling 3
2.1.1 Hydrographic sampling methods 3
2.1.2 Plankton sampling methods 3
2.2 Distribution and Abundance Estimation 4
2.2.1 Survey area 4
2.2.2 Sampling methods 5
2.2.3 Data analysis 23
2.3 Biological sampling 24
CHAPTER 3 RESULTS 26
3.1 Hydrography 26
3.2 Distribution 26
3.2.1 Dolphin Head to Ambrose Bay 26
3.2.2 Ambrose Bay to Cunene River 27
3.2.3 Cunene River to Tombua 28
3.3 Abundance 28
3.4 Biological analysis of fish 30
3.4.1 Length-frequency 30
3.4.2 Length-weight 30
3.4.3 Reproductive status 30
3.4.4 Condition 31
CHAPTER 4 CONCLUDING REMARKS 31

ANNEXES

$$
\begin{array}{ll}
\text { I } & \text { Instruments and fishing gear } \\
\text { II } & \text { Hydrographic profiles } \\
\text { III } & \text { Summary of trawl stations } \\
\text { IV } & \text { Records of fishing stations } \\
\text { V } & \text { Biomass and numbers } \\
\text { VI } & \text { Length-frequencies of different areas } \\
\text { VII } & \text { Length-weight relations } \\
\text { VIII } & \text { Reproductive status } \\
\text { IX } & \text { Fish condition factor } \\
\text { X } & \text { Results of intercalibration experiment } \\
\text { XI } & \text { Additional experiments }
\end{array}
$$

CHAPTER 1 INTRODUCTION

1.1 OBJECTIVES

- To estimate the biomass of four of the commercially important pelagic and mesopelagic fish species in the northern Benguela system; pilchard Sardinops ocellatus, anchovy Engraulis capensis, round herring Etrumeus whiteheadi, juvenile (inshore) and adult (mid-water) Cape horse mackerel Trachurus capensis.
- To estimate the biological condition of pilchard, anchovy, round herring and horse mackerel, length, weight, reproductive stage and age.
- To conduct an intercalibration of the scientific acoustical systems of the RV 'Dr. Fridtjof Nansen' and RV 'Welwitschia'.
- To conduct in situ target strength measurements on the surveyed fish, using a new split beam sonde, and to perform measurements of schools using the scientific SA950 sonar, dependent on time available, weather conditions and fish distribution.
- To collect data on basic oceanographic parameters, namely dissolved oxygen, temperature and salinity, for correlation with pelagic fish distribution and densities.
- To obtain data on vertical distribution of phytoplankton and sea surface chlorophyll in order to assess the applicability of the satellite biomass estimation programme (SEAWIFS).
- To obtain data on the distribution of planktonic food in relation to hydrography and planktivorous fish.
- To perform smaller experiments as opportunities arise (e.g. if the vessel remains semistationary in an area for hours, short-term fluctuations in phytoplankton biomass would be monitored). If time allows, alternative pathways in chlorophyll extraction would be tested.
- To determine densities of zooplankton for preliminary estimates of zooplankton biomass and to identify the most dominant zooplankton organisms and their relative distributions. This programme is to be regarded as a trial.

1.2 PARTICIPATION

The scientific staff from Namibia on the RV 'Dr. Fridtjof Nansen' were:
from 1/6/94 to 23/6/94: David Boyer, Heidrun Plarre, Mari du Plooy, Deon Louw and James Cole (Warwick University, U.K.), from 1/6/94 to 10/6/94: Graca D Almeida and Sielfried Gowaseb, from 10/6/94 to 24/6/94: Ann-Lisbeth Agnalt, Michael Evenson and Victor Hashoonga from 17/6/94 to 23/6/94: Janet Botha

From Angola:
N'Kossi Luyeye and Alphonso Pedro Kingombo joined the cruise until 10/6/94.

The scientific staff from the Institute of Marine Research were:
Egil Ona, Ingvald Svellingen, Valantine Anthonypillai and Erling Molvær.

1.3 SCHEDULE

The RV 'Dr. Fridtjof Nansen' left Walvis Bay at 18 h 00 on 1st June and conducted a preliminary survey from Walvis Bay northward to Angola. The 18,38 and 120 kHz echo-sounders and the split-beam sonde were calibrated using standard targets in Baía dos Tigres on 5th and 6th June. Trials of calibrating the SA950 sonar were also performed in Baia dos Tigres. The entire area southwards to $26^{\circ} \mathrm{S}$ was surveyed between 6th June and 19th June. An intercalibration exercise was conducted with the RV 'Welwitschia' on 8th June (Annex X). The RV 'Dr. Fridtjof Nansen' met with the RV 'Welwitschia' on 10th June and exchanged Namibian staff. The two vessels met a second time on 19th June to transship another Namibian scientist. The RV 'Dr. Fridtjof Nansen' arrived in Walvis Bay on 23 rd June at 08 h 00 . A total of 3900 nautical miles were steamed and 83 trawl stations worked.

The RV 'Dr. Fridtjof Nansen' was assisted between 17th and 20th June by the Namibian purse seiner 'Fiskeskjer', which served as a scouting vessel using a medium range 50 kHz Furuno multibeam sonar and fish-finding echo-sounder.

Since the present project began in 1990, this survey was the first pelagic survey to start in the north and work southwards. This was in order to accommodate the participants from Angola during the Angolan section of the survey as they were unable to participate later in the survey period.

CHAPTER 2 METHODS

2.1 HYRDOGRAPHIC AND PLANKTON SAMPLING

2.1.1 Hydrographic sampling methods

A total of 58 hydrographic profiles were worked along 10 hydrographic sections (Annex II) using a Seabird $911+$ CTD probe, also carrying a sensor for dissolved oxygen. At each station, water samples were taken at 5 m and at the bottom. These were analyzed for dissolved oxygen using the Winkler method for a check on the measurements made with the sensor. Earlier calibration factors between sensor and Winkler seemed to fit well with the measurements made. Some of the Winkler analysies were, however, regarded as inaccurate, as analysed by untrained personnel.

2.1.2 Plankton sampling methods

At each environmental station, namely at 20 m depth, 2,5,10, 15 and 25 nautical miles from the coast along each latitudinal degree line, the CTD rosette was used to obtain water samples for chlorophyll analysis. Biomass will be estimated for the following depths: 0 m (sampled with a bucket), $5 \mathrm{~m}, 10 \mathrm{~m}, 25 \mathrm{~m}, 50 \mathrm{~m}, 75$, bottom of water column.

Chlorophyll was estimated fluorometrically, based on the applied recommendations of the SCOR UNESCO Working Group as reported in "Recommended Procedures for Measuring the Productivity of Plankton Standing Stock and Related Properties" by the U.S.A. National Academy of Sciences (1969). In short, the analysis entailed:
a. Removal of the algae from the sample by filtration through a 45 micrometer membrane filter.
b. Extraction of the pigment with acetone.
c. Measuring the chlorophyll level against a chlorophyll standard of known concentration, using a Turner $10-\mathrm{AU}$ Fluorometer.

The zooplankton sampling methods were based on those used by Sea Fisheries Research Institute in Cape Town. A vertical Calvet haul was taken at every CTD station on the 10 hydrographic lines. The net was attached to the CTD cable just above the CTD frame and was lowered with the CTD to the bottom. The Calvet and the CTD were retrieved at $1.0 \mathrm{~m} / \mathrm{s}$. Before and after each haul, the reading of the flowmeter was recorded. After each haul, the net was thoroughly washed down with a strong jet of seawater. The contents of the cod-end bucket were then transferred to a labelled jar and preserved with 5% formalin.

The samples were taken to Swakopmund for sorting and identification of the most dominant zooplankton groups.

The flowmeter was calibrated at the beginning of the cruise by lowering the net (without buckets at the cod-ends) several times to 70 m in order to obtain an average recording the flowmeter reading each time.

A separate report on the plankton results will be presented later.

2.2 DISTRIBUTION AND ABUNDANCE ESTIMATION

2.2.1 Survey area

The limits of the survey area were determined from the previous data of pelagic fish distribution and from reports of commercial fishing vessels prior to, and during, the survey. Previous surveys have extended in the south either from the boundary of the northern and southern Benguela systems, the Lüderitz upwelling cell, or from the border between South Africa and Namibia. Immediately prior to the present survey the South African RV 'Africana' surveyed the Namibian region south of the Lüderitz upwelling cell, and it was therefore regarded as unnecessary for the

RV 'Dr. Fridtjof Nansen' to survey this far south. The southern extent of the survey was therefore taken as the Lüderitz upwelling cell, 26° S. Since the pelagic fish distribution also extends into Angolan waters, permission was obtained from the Angolan authorities to survey northward to the area west of Tombua $\left(16^{\circ} \mathrm{S}\right)$.

The inshore limit of the survey was determined by the vessel draught and was normally about 15 m sea depth, or 10 m below the transducer. The offshore limit was determined from a preliminary investigation survey which covered the area to the 150 m isobath. As the schooling species pilchard, anchovy and round herring were found within the 100 m isobath, a larger part of the effort was allocated to this zone. Less frequent transects extended offshore to a depth of about 350 m to cover the more dispersed concentrations of horse mackerel.

To allow comparison with previous pelagic fish surveys, the region was divided into three areas:

2600^{\prime} to $2100^{\prime} \mathrm{S}$	Dolphin Head to Ambrose Bay
2100^{\prime} to $1715 ' \mathrm{~S}$	Ambrose Bay to Cunene River
1715^{\prime} to $1600^{\prime} \mathrm{S}$	Cunene River to Tombua

The course tracks with the fishing stations for the three areas are shown in Figures $1 \mathrm{a}-\mathrm{c}$ respectively.

Annex I gives a description of the instruments and the fishing gear used.

2.2.2 Sampling methods

The acoustic echo-integration system provided measurements of fish area densities, usually averaged over 5 nm distances. However, in areas of high fish concentrations and large along-track variability, an output resolution of 1 nm was used. The acoustic unit measured by a calibrated echo-integrator system is the area back-scattering coefficient, s_{A}, defined as the integral of the volume back-scattering coefficient between the depth limits Z_{1} and Z_{2}, normalized to $\left[\mathrm{m}^{2} / \mathrm{nm}^{2}\right]$:

$$
s_{A}=4 \pi(1852)^{2_{2}} \int s_{v} d z
$$

Figure 1a Course track and fishing stations, Easter Point to Ambrose Bay.

Figure lb Course track and fishing stations, Ambrose Bay to Cunene River.

Figure 1c Course track and fishing stations, Cunene River to Tombua.

The integrator data from fish targets were allocated to the following groups on the basis of trawl sampling and acoustic character, as recognised from the echo recordings:

Pilchard
Anchovy
Horse mackerel
Non-commercial pelagic fish, mainly myctophids and gobies
Plankton, including jellyfish
Other demersal species, e.g. hake, sharks, etc.

In general, the integrator data was partitioned to species or species groups by separating the echo recordings horizontally or vertically in the scrutinizing process on the Bergen Echo Integrator, BEI, (Knudsen, 1990). However, where several species or groups of species occur as mixed recordings, their relative contribution to the total integrator reading were computed from the trawl data, assuming a catch efficiency equal for all species and length groups. The correct way to partition the integrator reading when assuming similar target strength-to-length relations for the different species may then be determined from:

$$
k_{j=}=S_{A_{T}} \frac{\sum_{i=1}^{n} n_{i,} L_{i}^{2}}{\sum_{j=1 i=1}^{m} \sum_{i, j}^{n} n_{i j} L_{i}^{2}}
$$

where k_{j} is the relative contribution to the total area backscattering coefficient, $\mathrm{s}_{\mathrm{A}_{\mathrm{T}}}$ from species ${ }_{\mathrm{ij}}$. If the length differences between the different groups are small, the relative contribution may with care be simplified by determining the factor directly from its relative contribution to the total weight of the catch. During this survey, the latter simplification has been used in the partitioning of the integrator data on mixed recordings.

The sampling intensity, or degree of coverage, was determined from the approximate density distribution of fish determined during the course northward, reports from the fishing fleet and the accompanying fishing vessel.

The survey strategy used was essential similar to the one used in previous surveys:

1 All available prior information on fish density and distribution was assessed and used to estimate the probable distribution and density of each region surveyed.

2 The effort was increased in areas with high fish densities.

3 When possible, the most important areas were covered both during day and night.

In regions of expected low densities zig-zag transects were surveyed from inshore of the distribution, where possible, to the offshore edge of the distribution. In areas of high expected densities parallel transects were surveyed, also from the inshore to offshore limits of the distribution, perpendicular to the fish density gradient.

5 The widely dispersed mid-water horse mackerel were mainly surveyed using parallel transects.

Information from the fishing fleet and from the preliminary coverage of the area by the RV 'Dr. 'Fridtjof Nansen' and 'Fiskesjer' indicated that the current fish densities were low in most regions and that a zig-zag type of survey pattern would give an appropriate degree of coverage.

In one area, however, in southern Angola, an increased frequency of recorded schools on the northward track indicated that parallel transects would provide the most appropriate coverage of this area.

The weather was favorable for an acoustic survey during most of the cruise, although some echoes were lost during rough weather on 8th and 9th June off Cape Frio. The fish densities in this area were low and air bubble attenuation has not unduly affected the survey results.

Trawl sampling of fish was generally successful, although some hauls were disrupted by high concentrations of jellyfish, as experienced in some previous surveys. This was particularly serious in the mid-water horse mackerel targeted trawls. It was not established whether the jellyfish concentrations were close to the surface and caught during setting or hauling the net, or at the same depth as the horse mackerel. Dense layers of jellyfish also occurred south of Walvis Bay and disrupted trawling in that region.

Mixed species tended to occur in fairly open, low density, shoals and the allocation of species proportions was based solely on the results of trawls in adjacent areas. Some pilchard occurred in these mixed shoals, but in general most of the pilchard stock occurred in small, dense monospecific schools which were easy to identify from the echo recordings. The identification of these schools was confirmed by a number of trawls.

All catches were sampled for composition by weight and numbers of each species and the size distribution of commercially important species, using total length, was determined. The length frequencies of these species are given in Annex V. The complete records of fishing stations are shown in Annex IV.

The distributions of the target species are shown in Figures 2a-c, 3a-c, 4a-c and 5a-c. The scale used in the distribution charts to illustrate different levels of density is in absolute acoustic units, the area back-scattering coefficient, $\mathrm{s}_{\mathrm{A}}\left[\mathrm{m}^{2} / \mathrm{nm}^{2}\right]$. This ensures the maps to be comparable from survey to survey. Note that in earlier surveys, the scale used was $0.1 \mathrm{x}_{\mathrm{A}}$. The conversion of the area back-scattering coefficient to biomass, i.e to [tons $/ \mathrm{nm}^{2}$], is dependent of the average size of

Figure 2a Distribution of pilchard, Easter Point to Ambrose Bay.

Figure 2b Distribution of pilchard, Ambrose Bay to Cunene River.

Figure 2c Distribution of pilchard, Cunene River to Tombua.

Figure 3a Distribution of round herring, Easter Point to Ambrose Bay.

Figure 3b Distribution of round herring, Ambrose Bay to Cunene River.

Figure 3c Distribution of round herring, Cunene River to Tombua.

Figure 4a Distribution of anchovy, Easter Point to Ambrose Bay.

Figure 4b Distribution of anchovy, Ambrose Bay to Cunene River.

Figure 4c Distribution of anchovy, Cunene River to Tombua.

Figure 5a Distribution of horse mackerel, Easter Point to Ambrose Bay.

Figure 5b Distribution of horse mackerel, Ambrose Bay to Cunene River.

Figure 5c Distribution of horse mackerel, Cunene River to Tombua.
the surveyed fish. An aproximate conversion factor for three fish sizes, 10,20 and 30 cm , and average values in the density scales used are given in the table below, asuming a target strength of TS $=20 \log \mathrm{~L}-72[\mathrm{~dB}]$. As the actual mean density within the scale are not indicated in the charts, it is not possible to compute the total biomass directly from the distribution maps, using the indicated conversion, but may help in the interpretation of the distribution maps.

Density $\left(s_{A}\right)$	$1-500$	$501-1000$	$1001-3000$
Fish length (cm)			
10	20	60	130
20	47	140	380
30	115	230	460

2.2.3 Data analysis

The area density of fish as determined by the hydroacoustic method is:

$$
\rho_{A}=\frac{s_{A}}{\langle\sigma\rangle}
$$

where s_{A} is the area backscattering coefficient, and $\langle\sigma\rangle$ is the average acoustic cross section of one fish of the measured species.

The mean area backscattering coefficient, s_{A}, for each surveyed area was obtained by averaging all data measured during the coverage of that area, excluding those values obtained during trawling. The 95% confidence intervals of the mean s_{A} values were also computed for some areas and comparisons between the different types of transects will be made in a separate report.

The average acoustic cross-section for the fish surveyed was derived from the target strength to size relation earlier used during the surveys conducted by RV 'Dr. Fridtjof Nansen':

$$
T S=10 \log \left(\frac{\langle\sigma\rangle}{4 \pi}\right)=20 \log L-72
$$

where the total length of the fish is expressed in centimeters. This target strength to size relation has been used for a number of fish species (pilchard, anchovy and round herring), although originally derivated from early measurements of North Sea herring. In earlier reports, the relation is also referred to as the fish conversion factor:

$$
C_{F=}=\frac{1}{\langle\sigma\rangle}=1.26 E \sigma \times L^{-2.0}
$$

However, recent studies using split-beam echo-sounders indicate that the target strengths of these species may be higher than assumed above (Ona and Svellingen, pers. comm.). Until a reliable, in situ target strengths have been established, the indicated TS has been used to enable comparison with previous estimates. It is therefore important to note that if a more realistic target
strength of $\mathrm{TS}=20 \log \mathrm{~L}-70[\mathrm{~dB}]$ is used the total biomass will be reduced for all species by about 40%.

The length distribution of pilchard within an element area was computed by weighting the lengthfrequencies obtained in each trawl sample within the area by the measured area backscattering coefficient, s_{A}, during trawling and close to the trawl station. This was done mainly because the trawling was directed on schools and layers for identification purpose, and that the CPUE varied from haul to haul. For species with a looser schooling behaviour, often registered as shoals or in layers, such as anchovy, round herring and horse mackerel, the length-frequency of each trawl was weighted by the CPUE.

The following formula was applied to calculate the number of fish in each length frequency group (cm) in an area:

$$
n_{i=}=s_{A} \times A \times \frac{p_{i}}{\sum_{i=1}^{n} \sigma_{i} \cdot p_{i}}
$$

where
$\mathrm{A}=$ area in nm^{2}
$\mathrm{s}_{\mathrm{A}} \quad=$ mean acoustic backscattering coefficient in the area
$p_{i} \quad=$ proportion of fish in length group i in samples from the area
$\sigma_{\mathrm{i}} \quad=$ acoustic cross section for one fish in length group i

The number per length group was then summed and the total number of fish obtained. The total biomass of fish was computed using the length-weight relationship obtained from trawl samples.

The biomass estimates for all the target species are shown in Table 2.

2.3 BIOLOGICAL SAMPLING

Total length (Lt.), body weight, and gonad weights were recorded for pilchard, anchovy, and horse mackerel to the nearest $1 / 2 \mathrm{~cm}$ or 1 g below, respectively. Sex and reproductive stage were described by macroscopic examination, scoring each individually sampled fish according to the following categories:

1 Juvenile
2 Inactive
3 Active
4 Ripe
5 Spent

Otoliths were removed for ageing at a future date.

Sampling was standardized across 2° latitudinal intervals according to the following rules:

1 The minimum size of anchovy sampled was 10.0 cm Lt ., and for horse mackerel and pilchard 14.0 cm Lt.
2 Up to 10 individuals were sampled per 0.5 cm length class in each 2 latitude interval.
3 Not more than 3 individuals were sampled per 0.5 cm length class per trawl.

Separate from the above parameters, length and weights for each of the four species were recorded by selective sampling across the full range of fish sizes found in trawls. The actual length-weight relationships were determined by fitting power curves to the regressions of weight against length. These relationships were determined for the whole region, as well as for each latitude interval where there was a sufficient spread of lengths among the samples.

The length-weight data of fish above the minimum size (see above) were also used to calculate the fish condition factor, (weight X 100)/length ${ }^{3}$, of pilchard and anchovy. The condition factors of individual samples were pooled and averaged for each 2° latitude interval in which suitably sized fish were found. For pilchard this included areas $16^{\circ}-17^{\circ} \mathrm{S}$ and $20^{\circ}-21^{\circ} \mathrm{S}$, and for anchovy: areas $16^{\circ}-17^{\circ} \mathrm{S}, 18^{\circ}-19^{\circ} \mathrm{S}$, and $20^{\circ}-21^{\circ} \mathrm{S}$.

Significance tests were performed to evaluate differences in fish condition between areas for each species. The type of test depended on the number of areas being compared; for a comparison of the two 'pilchard areas', a two-tailed F-test followed by a Student's t-test on the differences between the means was used. Whereas for a comparison of the three 'anchovy areas' a Model-I Anova for 'unplanned' comparisons between means was used (see Sokal \& Rohlf, 1987).

Time limitations prevented similar calculations for horse mackerel and round herring to be done during the survey. These will be available at a later stage.

CHAPTER 3 RESULTS

3.1 HYDROGRAPHY

Annex II shows sections of temperature, salinity and oxygen obtained during the cruise.

The surface temperature is relatively low, about $13^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$, typical for the season, resulting in weakly stratified water masses. In the upper 200m the temperature varies less than 2 degrees in the southern part, increasing to slightly above 2 degrees in the northern part where the surface layer is somewhat warmer.

The salinity is also extremely homogeneous in the upper 200 m , especially in the southern part.

The surface oxygen censentration is above $4 \mathrm{ml} / \mathrm{l}$ in the southern part, decreasing to less than $3 \mathrm{ml} / 1$ in the northernmost section at Cunene. The bottom values are less than $1 \mathrm{ml} / \mathrm{l}$.

The water characteristica indicate upwelling at some of the sections. This is most clearly seen in the oxygen distribution by the upward tilt of the isolines approaching the coast, but it is also indicated by the temperature and salinity distributions. The most typical upwelling situation is seen in the section taken at Walvis Bay, where the surface oxygen consentration is less than $2 \mathrm{ml} / \mathrm{l}$ close to the shore. Strong upwelling also seems to have occurred at the Rocky Point section. There is evidence for upwelling also at the other sections, except the northernmost one at Cunene.

3.2 DISTRIBUTION

3.2.1 Dolphin Head to Ambrose Bay

No adult pelagic fish were found in this region. Scattered shoals of juvenile fish occurred close inshore from Walvis Bay to Conception Bay. North of Sandwich Harbour this concentration was fairly dense, but elsewhere the values were low. The species composition was mixed and owing to high densities of jellyfish disrupting the trawls, difficult to determine with any accuracy. Horse mackerel appeared to be the dominant species.

Some mixed shoals of juvenile pelagic fish occurred in the northern part of this region, extending northwards of Ambrose Bay. At the end of the survey a number of shoals of surface schooling juvenile fish were also found in 100 to 130 m waters off Cape Cross. Two trawls were made, one shoal was identified as juvenile hake and juvenile Cape horse mackerel, while another consisted of mainly anchovy and round herring, with smaller proportions of pilchard, horse mackerel and hake. The Lt. of all species was 6.5 to 8.5 cm . While steaming back to Walvis Bay from this region large areas of dispersed juvenile fish were observed near the surface. As it was full moon, it is likely that these fish had occurred above the transducer level during earlier coverages of this region and had not been observed. Owing to lack of time further investigations of this region were not possible. Both the RV 'Dr. Fridtjof Nansen' and RV 'Welwitschia' had surveyed this region acoustically during the previous week and had not found any pelagic fish. It was therefore assumed that the total biomass of juvenile fish occurring in this offshore region was not large.

Very little adult pelagic fish was found north of Walvis Bay.

Despite reports of commercial catches of mid-water horse mackerel being made south of $22^{\circ} \mathrm{S}$ and the RV 'Dr. Fridtjof Nansen' recording substantial catches at $24^{\circ} \mathrm{S}$ in particular during the trawl survey in May, mid-water horse mackerel was not recorded south of Walvis Bay. Some few individuals were caught in day-time bottom trawls targeted at demersal hake.

3.2.2 Ambrose Bay to Cunene River

The main concentration of pelagic fish in this region was a dense area of pilchard schools north of $17^{\circ} 25^{\prime} \mathrm{S}$, continuing northwards into Angolan waters. These schools migrated from very shallow waters during daylight out to between the 40 and 60 m isobaths at night. Some few very small schools of pilchard were also recorded near Cape Frio Point and south of Cape Frio reef.

Some dispersed pelagic fish occurred in waters less than 50 m deep in the northern part of this region. These fish were often scattered between the dense pilchard schools. These layers were mixed species, usually dominated by anchovy, but also containing round herring, horse mackerel, pilchard and various predatory species such as snoek Thyrsites atun, sharks and kob Argyrosomus hololepidotus.

Dispersed juvenile fish occurred between Möwe Bay and Ambrose Bay near the surface between the 20 m and 80 m isobaths, the density being fairly high near Ambrose Bay. Pilchard, anchovy, horse mackerel and round herring occurred in this layer, but concentrations of jellyfish hindered
the determination of species proportions. Inshore all four target species seemed to be well represented, while further offshore round herring formed the dominant species.

Further offshore juvenile horse mackerel occurred throughout the region in sometimes fairly dense layers close to the seabed in depths of 80 to 150 m . Adult horse mackerel formed a band of fish between the 200 m and 350 m isobaths in the north. Trawling in this region was disrupted by dense layers of jellyfish.

3.2.3 Cunene River to Tombua

This region was dominated by dense schools of pilchard occurring from south of the Cunene to Baia dos Tigres, including inside the bay. As with the pilchard south of the Cunene, these schools migrated inshore into very shallow waters during the day and into depths of 20 to 40 m water at night, in some areas this represented a daily migration of at least 5 nm in each direction.

Some less dense shoals consisting mainly of anchovy occurred just north of the Cunene, while round herring occurred throughout the region, often in fairly dense shoals near the seabed around the 80 m isobath.

Horse mackerel occurred throughout the inshore part of the region. Transects to assess the midwater stocks were not conducted north of $17^{\circ} \mathrm{S}$, but as relatively high densities were recorded on the northern-most transect it is likely that some mid-water horse mackerel also occurred north of this line. Trawl samples north of $16^{\circ} 40^{\prime} \mathrm{S}$ consisted almost entirely Cunene horse mackerel Trachurus trecae, while further south Cape horse mackerel T. capensis was caught.

3.3 ABUNDANCE

A strong lateral migration of pilchard into shallow waters was noted in the north, such that during the day all fish were in waters less than 15 m depth and hence outside of the range of the RV 'Dr. Fridtjof Nansen'. All areas where pilchard were found were therefore surveyed at night, and in most areas zero-values were recorded on the inshore part of each transect indicating that all fish had moved into deep waters..

Previous surveys have shown that lower densities are recorded at night compared to the day-time values in the same area. In these instances the daytime values were used for the biomass estimate
based on the assumption that at night considerable amounts of fish occurred above the transducer level. As in previous surveys a vertical migration of pilchard was noted to occur at night, but judging from the recordings, and the SA950 sonar records, most of the fish seemed to be distributed within the transducer range.

The total biomass of pilchard found in Namibia and southern Angola (Table 1) was estimated to be about 260000 tonnes.

Owing to the inherent problems of assessing a small stock of schooling fish in shallow water using vertical echo sounders, the precision of the estimated biomass of pilchard may be rather low. However, supportive data from the sonar, not yet quantified for biomass estimation, also indicate that the present stock is small.

Table 1 Species composition and biomass estimates (in tonnes) of pelagic fish				
Area	Pilchard	Anchovy	Round herring	Horse mackerel
Tombua- Cunene River	240000	6000	2000	60000
Cunene River- Ambrose Bay	20000	30000	50000	1330000
Ambrose Bay- Dolphin Head	1000	15000	18000	110000
Total Angola Total Namibia	240000	6000	2000	60000
Total northern Benguela	20000	45000	70000	1440000

Some few pre-recruit pilchard schools were registered near Ambrose Bay and south of Walvis Bay, but the abundance was very low. While these fish may still be dispersed in the surface water layers, or possibly in deep waters outside of the survey area, and hence are not yet be fully available to acoustic surveys of this type, the indications are that recruitment of pilchard in 1994 will be weak.

Most anchovy were found in the Ambrose Bay to Möwe Bay region, but at an estimated biomass of some 51000 tonnes, this stock is also extremely small. More anchovy pre-recruits were recorded than pilchard, but the total number remains very few.

The biomass of round herring was estimated to 72000 tonnes. The round herring biomass was larger than anchovy, but as much of the stock formed small dispersed schools close to the bottom in waters of 50 m deep or more, this species is unlikely to be targeted by the purse seine fleet and therefore will remain economically unimportant.

Horse mackerel was widely dispersed between Ambrose Bay and $16^{\circ} 40^{\prime}$ S, and the total biomass was estimated at about 1500000 tonnes.

3.4 BIOLOGICAL ANALYSIS OF FISH

3.4.1 Length-frequency

Annex VI shows the length-frequency of each species in each of the 2° areas. Samples for ageing were collected and these data will become available later.

Adult pilchard and anchovy were found north of $19^{\circ} \mathrm{S}$, while pre-recruits occurred at Ambrose Bay and south of Walvis Bay. Few adult round herring were sampled. Pre-recruit round herring (Lt. $=15-18 \mathrm{~cm}$) were found north of $21^{\circ} \mathrm{S}$, usually in deeper waters than the other pelagic species. Juvenile round herring occurred in shoals mixed with similarly sized horse mackerel or anchovy, the main concentrations being north of Ambrose Bay and just south of Walvis Bay.

3.4.2 Length - Weight

Length-weight curves and regression equations for each of the four species in the whole region and for each latitude interval per species may be found in Annex VII.

3.4.3 Reproductive Status

Results were tabulated for both anchovy and pilchard per latitude interval (see Annex VIII). It was difficult to draw any conclusions from these results given the low number of samples per 1 cm length class and apparent inconsistencies between workers in evaluating maturity stage. Nevertheless the following were noted.

1 The sex ratio of anchovy and pilchard appeared to be inversely related to length in all the latitude intervals for which there were data.

2 Low spawning activity was suggested by low mean gonad weights. This is to be expected given that the main spawning activity of both species in the northern Benguela usually occurs in late summer and autumn.

3.4.4 Condition

Mean condition factor, and related parameters, are presented per area for pilchard and anchovy in Annex IX. For both species mean condition was found to be significantly higher in $16^{\circ}-17^{\circ} \mathrm{S}$ than for the more southerly latitude intervals. The null hypothesis for both species was that there was no difference in condition between the areas.

For pilchard the results of the two tailed F-test and Students t-test on the difference between two means was $\mathrm{F}_{\mathrm{s}}=1,20(\mathrm{P} \leq 0,05)$ and $\mathrm{T}_{s}=6,71(\mathrm{P} \leq 0,001)$. The results of the ANOVA test on anchovy condition are presented in Annex VI. Condition factor variances were found to be significantly greater among latitude intervals than within latitude intervals ($\mathrm{F}_{\mathrm{s}}=8,81, \mathrm{P} \leq 0,01$). Although no significant difference in condition was found between intervals $18^{\circ}-19^{\circ} \mathrm{S}$ and $20^{\circ}-21^{\circ} \mathrm{S}$ ($\mathrm{F}=0,74, \mathrm{P} \leq 0.05$), anchovy had significantly lower condition factors in both these intervals than in $16^{\circ}-17^{\circ} \mathrm{S}\left(\mathrm{F}_{\mathrm{s}}=16,00, \mathrm{P} \leq 0,01\right.$ and $\mathrm{F}_{\mathrm{s}}=6,97, \mathrm{P} \leq 0,05$ respectively $)$.

These differences in fish condition between the northern and central parts of the region suggest that feeding conditions were better in the north, at least during the duration of the survey. It is recommended that this be investigated further by examining the results of the plankton and environmental samples.

CHAPTER 4 CONCLUDING REMARKS

Conditions were, in general, favourable for surveying pelagic fish acoustically. Weather conditions were acceptable, while the fish distributions were usually within the range of the equipment. Some problems were encountered, including surface shoaling and diurnal migration into shallow waters occurred, but were compensated for by adjusting the survey strategy accordingly. Dense concentrations of jellyfish occurred, particularly in the central and southern region. These hampered trawling and probably masked fish echoes. The impact of such concentrations on the functioning of the ecosystem are likely to be large, whether through predation on fish eggs and
larvae, or through the removal of large amounts of energy and nutrients from the system. Determining the role of jellyfish in the northern Benguela urgently requires attention.

The survey commenced in the north and proceeded southwards, the first time that the region has been surveyed in this direction. Apart from the discomfort of sailing into the prevailing winds and seas, the major part of the fish stocks were surveyed during the early part of the survey, while large areas with low densities were covered at the end. It was therefore difficult to allocate survey time according to fish density. It is recommended that future surveys should be conducted from south to north thereby finishing with the highest concentrations and any remaining time can be allocated to improving the accuracy of the estimate of these high densities.

For the first time in several years the mid-water horse mackerel stocks were assessed during a pelagic survey. This necessitated spending a considerable amount of time on long transects offshore, when the time might have been better spent working more intensively inshore. It is suggested that the offshore stocks of horse mackerel would be better surveyed during the hake swept-area trawl surveys.

The pilchard abundance for the northern Benguela system, that is the Namibian region north of Luderitz and southern Angola, was estimated at below 300000 tonnes. This confirms the trends documented during the previous six surveys, that the stock size is declining rapidly and is now at such a small size that despite relatively conservative quotas, over-fishing is likely to exasperate the situation. The anchovy and round herring stocks are similarly very small, while the horse mackerel estimate is also lower than most previous estimates.

Experiments conducted during this and previous surveys and, in particular, on similar species elsewhere, indicate that the target strength used to calculate these estimates may be too low and that the actual biomass is somewhat less than the values reported. This means that Namibian pelagic stocks may be considerably smaller than the following tables suggest.

These data are supported by the poor catches of the purse seine fleet during the past 6 months. The catch of non-quota species, anchovy, round herring and juvenile horse mackerel, is some 70% below the catches during the same period in 1993, which was itself only an average season. The total amount of pilchard caught in 1994 has been similar to 1993, but while in most seasons almost all catches have been made close to Walvis Bay, between $24^{\circ} \mathrm{S}$ and $21^{\circ} \mathrm{S}$, only 23% have come from this region in 1994 and indeed less than 40 tonnes have been caught within 60 nm of Walvis so far this year.

In addition, the condition factor of the fish caught during this survey was significantly poorer in the central region, $22^{\circ} \mathrm{S}$ to $19^{\circ} \mathrm{S}$, than farther north. Assuming that the condition factor reflects the quality of the fishes' environment this suggests that feeding conditions, and other related environmental parameters, were not conducive to the maintenance of high pelagic biomasses in this region. Furthermore these poor environmental conditions are likely to have been further shunted up the food chain given the high seal moralities, reportedly due to starvation, in the region.

Table 2 Biomass estimates of pilchard, 1990 to 1994				
Survey	Vessel	Namibian waters	Angolan waters	Total
March 1990	Nansen	160000	-	-
June 1990	Nansen	515000	-	-
March 1991	Nansen	495000	-	-
August 1991	Benguela	565000	-	-
November 1991	Nansen/Benguela	625000	155000	780000
June 1992	Nansen/Benguela	610000	45000	655000
August 1992	Benguela	410000	-	-
November 1992	Benguela	515000	-	-
March 1993	Nansen	385000	50000	435000
June 1993	Nansen	300000	105000	405000
August 1993	Benguela	445000	-	-
November 1993	Benguela	320000	-	-
February 1994	Nansen/Benguela	0	250000	250000
June 1994	Nansen	20000	240000	260000

Table 3	Biomass estimates of anchovy and round herring combined and horse mackerel, 1990 to 1994, in the northern Benguela system.		
Survey	Vessel	Anchovy/ Round herring	Horse mackerel
March 1990	Nansen	170000	1200000
June 1990	Nansen	140000	1700000
March 1991	Nansen	180000	1300000
August 1991	Benguela	345000	-
November 1991	Nansen/Benguela	325000	1400000
June 1992	Nansen/Benguela	175000	2100000
August 1992	Benguela	250000	-
November 1992	Benguela	17000	-
March 1993	Nansen	335000	-
June 1993	Nansen	230000	-
August 1993	Benguela	220000	-
November 1993	Benguela	$?$	-
June 1994	Nansen	120000	1500000

Annex I Instruments and fishing gear

The Simrad EK-500, 38 kHz echo scientific sounder was used during the survey for fish abundance estimation. The Bergen Echo Integrator system (BEI) logging the echogram raw data from the echo sounder, was used to scrutinize the acoustic records, and to allocate integrator data to fish species. All raw data was stored to tape, and a backup of the database of scrutinized data, stored. The EK-500, 18 kHz and 120 kHz was often run simultaneously with the 38 kHz echo sounder to analyze frequency-different scattering, in particular in areas with myctophids or jellyfish. Only the echograms were however stored from these frequencies. The details of the settings of the 38 kHz were as follows:

Transceiver-1 menu	Transducer depth	0.0 m
	Absorbtion coeff.	$10 \mathrm{~dB} / \mathrm{km}$
	Pulse length	medium
	Bandwidth	wide
	Max Power	2000 W
	2-way beam angle	-21.0 dB
	SV transducer gain	28.1 dB
	TS transducer gain	28.1 dB
	Angle sensitivity	21.9
	3 dB beamwidth	6.8 deg
	Alongship offset	0.00 deg
Display menu	Athwardship offset	0.04 deg
	Echogram	$1,1 \& 2$
	Bottom range	15 m
	Bottom start	10 m
	TVG	$2010 g \mathrm{l}$
	SV Colour minimum	-75 dB
	TS Colour minimum	-65 dB

Printer menu Slave

Bottom detection menu Varying, -30 to -55 dB depending on school density, and bottom conditions.

Settings of the other echo sounders is given in detail in Instrument report, Nansen 1994404.

Hydrography

Conductivity, temperature density and dissolved oxygen were sampled regularly at CTD stations with a Seabird $911+$ CTD sonde. The salinity is computed from the data on conductivity by the software retrieving data from the sensors.

Fishing gear

Two pelagic trawl were used to sample pelagic fish during the survey. The small pelagic trawl, a 320 m circumference, 198 meshes opening Åkrehamn trawl were mainly used in medium to shallow water on high density registrations. In deeper water, in mixed, low density recordings, a larger pelagic trawl, a Åkrehamn $486 \mathrm{~m}, 152$ meshes opening trawl was used for identification and sampling. In very shallow water, where the small pelagic trawl could be destroyed by accidental bottom contact, a bottom trawl, the "Gisund super", was occasionally used to identify and sample schools. The bottom trawl was then rigged as for normal bottom trawl operation, but supplied with large surface floats on the wings. At depths of 20 meters or less, the opening then covered most of the water column. For all trawls, the Tyborøn, $7.8 \mathrm{~m}^{2}(1670 \mathrm{~kg})$ trawl doors were used. Complete drawings of the trawls used are included.

Annex II Hydrographic profiles

Annex III Summary of trawl stations

FRIDTJOF-NANSEN TRAWL INFORMATION (JUNE 199A)

Trawl Number	$\begin{gathered} \text { Latitude } \\ \left({ }^{\circ} \mathrm{S}\right) \end{gathered}$	Bottom Depth (m)	Headrope Depth (m)	Catch by Species (\% of total catch)				Total Caich (kg)
				Trachurus	Sardinops	Engraulis	Etrumeus	
375	15,57	18	18	0	0	0	0	269
374	16,01	600	100	0	0	0	0	165
373	16.26	55	55	0	0	0	4	4500
376	16,37	14	10	0	0	0	2	187
371	16,38	50	30	0	1	99	0	3027
372	16.40	18	5	0	60	0	13	15
377	16,41	80	35	0	0	0	0	1
381	16,42	20	10	0	8	0	91	77
380	16.52	5	13	0	98	1	0	10000
384	17,00	900	200	0	0	0	0	3
383	17.00	130	130	100	0	0	0	3000
379	17,00	15	15	3	77	6	2	1005
382	17,02	20	20	18	0	49	17	417
385	17,11	23	10	3	43	50	3	708
370	17.21	65	8	0	0	0	100	1
387	17,34	40	15	18	14	27	26	413
386	17,41	85	85	97	0	0	0	7000
389	18,00	180	50	100	0	0	0	4
388	18,13	40	5	0	15	69	8	26
390	18,28	313	150	0	0	0	0	17
369	18,35	117	117	96	0	0	0	2888
391	18,38	70	22	100	0	0	0	1001
368	18,43	33	10	5	3	53	0	28
378	18,49	30	20	0	0	0	0	1
392	18.57	60	25	100	0	0	0	210
397	19,03	50	50	99	0	0	0	107
367	19.03	136	45	100	0	0	0	15
396	19,05	30	15	,	4	80	2	178
398	19,13	80	30	100	0	0	0	600
395	19,19	48	12	54	0	42	0	24
393	19,25	300	53	98	0	0	0	122
394	19,27	180	30	96	0	0	0	624
399	19,39	50	20	49	0	40	3	90
366	19,45	93	29	83	0	0	0	36
400	19,46	80	37	100	0	0	0	10003
401	19,57	25	10	73	1	21	3	243
402	20,01	285	92		et burs			
408	20,04	90	90	98	0	0	0	145
365	20,06	142	35	0	4	0	96	339
407	20,06	64	40	38	1	0	61	46
364	20,13	127	100	0	1	0	97	77
409	20.14	20	0	15	10	45	8	424
406	20.16	44	28	1	2	1	95	21
405	20.18	18	10	0	23	68	8	365
410	20,20	95	55	94	0	0	2	83
403	20,28	327	327	0	0	0	0	238
404	20,28	170	70	94	0	1	1	149

Trawl Number	Latitude (${ }^{\circ} \mathrm{S}$)	Bottom Depth (m)	Headrope Depth (m)	Catch by Species (\% of total catch)				$\begin{gathered} \text { Total } \\ \text { Catch }(\mathrm{kg}) \end{gathered}$
				Trachurus	Sardinops	Engraulis	Etrumeus	
415	20,30	317	311	38	0	0	0	151
411	20,38	70	15	1	1	1	97	146
363	20,42	30	15	26	0	0	68	1430
412	20,58	45	18	1	8	6	85	945
413	20,59	34	34	41	3	39	1	2000
414	20,59	171	164	89	0	0	0	2464
416	20,59	256	249	38	0	0	0	146
417	21,02	270	165	$\overline{8}$	0	0	0	1
423	21.04	25	10	0	0	2	43	1
422	21.10	35	5	31	26	5	29	41
420	21.12	299	292	5	0	0	0	32
424	21.12	47	40					0
419	21,13	297	195	11	0	0	0	9
418	21.17	300	183	0	0	0	0	0
425	21,29	44	13	0	2	0	97	172
421	21,30	97	0	32	1	66	0	8
444	21,43	114	5	43	0	0	0	0
443	21,44	114	10	0	0	0	0	0
442	22,00	78	70	0	0	0	0	0
426	22.06	36	10	17	1	4	3	11
441	22,12	283	276	36	0	0	0	1
445	22,13	98	10	7	1	37	55	119
427	22,42	34	27	33	0	0	0	3
438	22,48	314	307	3	0	0	0	446
440	22,53	111	70	12	0	0	0	1
437	22,58	296	289	26	0	0	0	231
439	23,06	27	10	50	3	10	36	153
428	23,09	22	5	70	4	14	11	70
430	23.19	49	42	30	0	0	9	55
429	23.27	33	26	8	0	0	0	19
431	23,39	24	5	38	11	44	4	2
436	24,00	323	316	0	0	0	0	611
435	24,23	324	150	0	0	0	0	2
435	24,23	325	150	0	0	0	0	2
432	24,55	26	0	25	0	1	74	6
434	25,01	120	113	0	0	0	0	31
434	25,01	120	113	0	0	0	0	31
433	25,07	17	10	10	0	2	7	254

Annex IV Records of fishing stations

species

CATCH/HOUR			
weight	numbers	OF TOT. C	SAMP.NO
5308.64	171158	72.25	998
2038.31	86029	27.74	999
12.00	60	0.16	1000
7358.95		100.15	

SPECIES
Etrumeus whiteheadi
Sardinops ocellatus
Merluccius capensis, juveniles
triglidaE
Lepidopus caudatus
Total

CATCH/HOUR		OF TOT. C	SAMP.NO
weight	numbers		
149.76	3430	98.00	1004
2.32	36	1.52	1003
0.40	18	0.26	1001
0.24	18	0.16	1002
0.06	4	0.04	
0.04	2	0.03	

species
Etrumeus whiteheadi
Sardinops ocellatus
rrachurus capensis
Total

CATCH/HOUR weight numbers		of tot. a sam	
651.89	22032	96.00	1006
25.56	332	3.76	1005
1.58	70	0.23	
679.02		99.99	

species	CATCH/HOUR		\% OF TOT.	SAMP . NO.
Trachurus capensis	120.00	6964	82.96	1008
Merluccius eapensis, juveniles	16.80	912	11.62	1007
Thyrsites atun	5.72	4	3.95	1009
Etrumeus whiteheadi	1.40	280	0.97	
Trichiurus lepturus	0.72	72	0.50	
Total	144.64		100.00	

Species	CATCH/HOUR		- OF TOT. C	SAMP. No
	weight	numbers		
Trachurus capensis	4515.00	192290	100.00	1009
rotal	4515.00		100.00	

spectes	CATCH/HOUR		8 of tot	SAMP. No
	weight	numbers		
Engraulis capensis	828.00	164352	86.86	1011
trachurus, Juveniles	77.52	11872	8.13	1010
sardinops ocellatus	47.28	7704	4.96	1012
Merluccius capensis, juveniles	0.48	24	0.05	1013
Total	953.28		100.00	

Species
Trachurus, Juveniles
Dentex macrophthalmus
Merluccius capensis, female
Merluccius capensis, male
Trigla lyra
Raja miraletus
Sufflogobius bibarbatus
Ophisurus serpens

species
Etrumeus whiteheadi
Trachurus, Juveniles
Trachu

CATCH/HOUR	OF TOT. C	SAMP. NO	
weight	numbers		
0.44	8	69.75	1019
0.20	76	31.25	1018
0.64		100.00	

species	Catch/hour		- of tot c samp	
	weight	numbers		
Enqraulis capensis	89925.00	2866500	99.04	1020
Sardinops ocellatus	645.00	16500	0.71	1021
Etrumeus whiteheadi	195.00	6000	0.21	1023
Trachurus, Juveniles	26.70	810	0.03	1022
Myliobatis aquila	7.80	30	0.01	
rotal	90799.50		100.00	

species	CATCH/HOUR weight numbers		Q of tor. C	SAMP NO
sardinops ocellatus	54.00	624	61.64	1226
Trachurus trecae	18.36	540	20.96	1225
Etrumeus whiteheadi	9.96	294	11.37	1224
Pomatomus saltatrix	2.94	18	3.36	
spondyliosoma cantharus	2.34	6	2.67	
Total	87.60		100.00	

DATE: $9 / 6 / 94$ GEAR TYPE; PT NO: 6 PROSITION:Lat STATION: 388 $\begin{aligned} & \text { start } \text { stop duration } \\ & \text { Long } \text { E } \\ & 1150\end{aligned}$ $\begin{array}{llllll}\text { TIME } & : 03: 13: 00 & 03: 37: 00 & 24 \\ \text { LOG } & : 5260.70 & 6262.00 & 1.30\end{array}\left(\begin{array}{l}\text { Purpose code: } \\ \text { Area code }: ~\end{array}\right.$ $\begin{array}{lrrll}\text { LOG }: 5260.70 & 6262.00 & 1.30 & \text { Area code : } \\ \text { OEPTH: } & 5 & 5 & & \text { Gearcond.code: }\end{array}$ $\begin{array}{lrrr}\text { PDEPTH: } & 5 & 5 & \text { Gearcond code: } \\ \text { BDEPTH: } & 33 & 47 & \text { validity code: }\end{array}$

Sorted: 24 kg Total catch: 25.55 CATCH/HOUR: 63.88
species
Engraulis capensis
ardinops ocellatus
Etrumeus whiteheadi
Thyrsites atun
chelidonichthys capensis
Todarodes sagittatus
Frachurus, Juveniles
Total

CATCH/HOUR weight numbers		of tot,	SAmp. no
45.25	8978	70.84	1077
9.40	1560	14.72	1076
4.73	260	7.40	1075
2.73	3	4.27	
1.05	3	1.64	
0.48	18	0.75	
0.25	48	0.39	1074

species
myctophidae
Ruvettus pretiosus
Brama brama
synagrops microlepis

Total

CATCH/HOUR		OF TOT. C	SAMP.NO
weight	numbers		
20.00	11376	59.70	1079
7.94	2	23.70	
5.08	2	15.16	
0.24	16	0.72	
0.24	2	0.72	

species
Trachurus capensis
Thyrsites atun
Todarodes sagittatus
Total

DATE: 12	($6 / 94$		$\begin{aligned} & \text { GEAR TYPE: PT No: I } \\ & \text { duration } \end{aligned}$			Project station 399		
		stop				OSITION:Lat	s	1939
						Long	E	1247
time :	03:43:00	03:58:00	15 (min)	Purpose code: 1				
LOG :67	6753.20	6754.20	1.00	Area code : 3				
FDEPTH:	20	15		Gearcond, code:				
BDEPTH:	48	57		validity				
Towing dir: 290° Wire out: 150 mm Speed: $4 \mathrm{kn*10}$								
Sorted	d: 18 Kg		tal catch:	90.38		TCH/HOUR:		. 52

species	CATCH/HOUR		\% of rot c	Samp. no.
Trachurus capensis	177.80	17780	49.18	1101
Engraulis capensis	145.40	9268	40.22	1102
merluccius capensis	19.60	660	5.42	1100
Etrumeus whiteheadi	10.20	1260	2.82	1104
Trigla lyra	6.00	60	1.65	
Galeichthys feliceps	2.12	4	0.59	
Sardinops ocellatus	0.40	60	0.11	1103
Total	361.52		100.00	

species	CATCH/hour		- of tot. C	SAMP. no.
	weight	numbers		
Trachurus, Juveniles	357.70	28222	73.70	1107
Engraulis capensis	100.54	7392	20.72	1108
Etrumeus whiteheadi	14.96	1518	3.08	1109
Sardinops ocellatus	7.04	418	1.45	1110
Pomatomus saltatrix	5.10	2	1.05	1111
Total	485.34		100.00	

DATE: 12	2/ 6/94					Project station: 402			
			gear type: PT No: 5				SItion:Lat	s	2001
	start	stop	durat	ion			Long	E	1207
TIME : 17:28:00 17:52:00 24 (min) Purpose code: 1									
LOG : 6862.40 $6863.40 \quad 1.00$ Area code									
FDEPTH:	: 100	85			Gearcond.	de:	8		
BDEPTH:	287	285	validity code:						
	Towing d	r: 151*	wire	out: 4	50 m Spee		kn*10		
Sorted	d: k		tal	tch:			Ch/HOUR :		

Species
Merluccius capensis, female
Merluccius capensis, male
Chlorophthalmus atlanticus
Helicolenus dactylopterus
Galeus polli
Merluccius paradoxus, female
RAIDAE
Lophius upsicephalus
CRA s
Nezamia sp
MYCTOPHIDAE
Merluccius paradoxus, male
ATHADOO
Total

CATCH/HOUR weight numbers		- of tot. c	samp no.
386.20	412	40.49	1117
184.80	228	19.37	1116
164.64	5704	17.26	1112
158.88	4916	16.66	1113
23.28	264	2.44	
12.84	48	1.35	1115
10.52	8	1.10	
7.44	24	0.78	
2.16	48	0.23	
1.68	120	0.18	
0.72	192	0.08	
0.48	4	0.05	1114
0.24	48	0.03	
953.86		100.02	

specties
Trachurus capensis
Thyrsites atun
Merluccius capensis, juveniles
Etrumeus whiteheadi
Engraulis capensis
Total

CATCH/HOUR		OF TOT. C	SAMP.NO.
weight	numbers		
1674.00	35688	93.83	1118
43.80	24	2.46	
26.64	12	1.49	
23.40	1800	1.31	1119
9.00	180	0.50	
7.20	540	0.40	1120
1784.04		99.99	

DATE: $13 / \begin{aligned} & \text { 6/94 } \\ & \text { start }\end{aligned}$	stop	GEAR TYPE: PT NO:7 duration		Project station: 405			
					Ition: Lat	s	2018
					Long	E	312
TIME :09:30:00	10:00:00	30 (min)	Purpose cod	de:	1		
LOG : 6992.40	6994.10	1.70	Area code		3		
FDEPTH: 10	10		Gearcond.	ode	1		
BDEPTH: 19	17		validity	ode			
Towing dir	ir: 150°	Wire out	00 mm spee	34	$\mathrm{kn} * 10$		
Sorted: 25 Kg		tal catch:	364.76	cat	CH/HOUR:	729	. 52

Sorted: 11 kg Total catch: 46.36 CATCH/HOUR: 139.08

species
Engraulis capensis
Engraulis Capensis
sardinops ocellatu
merluccius capensis. juveniles
Trachurus, Juvenile
Etrumeus whiteheadi
Total

CATCH/HOUR			
Weight	numbers	OF TOT. C	SAMP.NO
345.55	19473	44.78	1136
118.35	1413	15.34	1133
82.47	2367	10.69	1134
75.98	267	9.85	1138
74.07	7293	9.60	1137
67.20	5536	8.71	1135
8.09	7	1.05	1139
771.72		100.02	

DATE:14/						Project station: 410			
	4/6/94	stop		R TYPE:	: PT No:l		Sition:Lat	5	2020
			duration				Long	E	1302
time =	:01:20:00	01:35:00	15	(min)	Purpose code:		1		
LoG :	:7106.60	7107.20	0.60		Area cod	:	3		
FDEPTH:	55	55			Gearcond	ode :			
BDEPTH:	96	94			validity	ode :			
	Towing d	r: 60°	wire	out: 20	00 m Spe	28	kn*10		
sorte	d: 9 K		tal	atch:	83.03		CH/HOUR:		

species	CATCh/hour		of tot. c samp.no	
	weight	numbers		
Trachurus capensis	306.00	15520	92.14	1140
Merluccius paradoxus	14.76	720	4.44	
chelidonichthys capensis	6.68	12	2.01	
Etrumeus whiteheadi	4.68	144	1.41	
Total	332.12		100.00	

/ $6 / 94$	stop	GEAR TYPE: PT NO:1 duration		project station: $4: 1$ POSITION:Lat S 2038			
					Long	E	15
TIME :05:37:00	05:52:00	15 (min)	Purpose c	:	1		
L.OG :7143.80	7144.90	1.10	Area code		3		
FDEPTH: 10	22		Gearcond.	de:			
BDEPTH: 63	72		validity	de:			
Towing	r: 295°	Wire out: 100	0 m spee		kn*10		
Sorted: 29 Kg		tal catch:	146.10		CH/HOUR:	584	

species
trumeus whitehead
ardinops ocellatu
Trachurus, Juveniles
Total

CATCH/hour		3 OF TOT	SAMP. NO
weight	numbers		
572.00	26480	97.88	1141
6.00	180	1.03	1144
3.20	180	0.55	1143
3.20	700	0. 55	1142
584.40		100.01	

SPECIES	CATCH/HOUR		\& OF TOT, C	SAMP.NO	
	weight	numbers			
Trachurus capensis	4911.00	191892	40.93	1153	
Engraulis capensis	4711.80	914118	39.27	1150	
Callorhinchus capensis	1041.60	540	8.68		
Argrosomus hololepidotus	424.80	126	3.54		
Sardinops ocellatus	320.40	46800	2.67	1152	
Chelidonichthys capensis	188.40	1344	1.57		
Galeichthys feliceps	180.60	540	1.51		
Etruneus whiteheadi	172.20	25636	1.44	1151	
Merluccius capensis, juveniles	45.60	2154	0.38		
GOBIDAE	3.00	540	0.03		
Total		11999.40		100.02	

species
Trachurus capensis Merluccius capensis Sufflogobius bibarbatus Austroglossus microlepis
rotal

CATCH/HOUR		\& of tot. C	SAMP. No
weight	numbers		
8880.00	188400	90.11	1154
968.00	17800	9.82	1155
4.00	1200	0.04	
1.92	8	0.02	
0.68	4	0.01	
9854.60		100.00	

species	CATCH/HOUR		of tot. C	SAMP. No
	weight	numbers		
Merluccius capensis, female	147.20	282	48.82	1157
Merluccius capensis, male	50.60	114	16.78	1156
Epigonus denticulatus	33.60	1032	11.14	
Lophius upsicephalus	30.60		10.15	
Trachurus capensis	11.36	64	3.77	1158
Galeus polli	10.72	176	3.56	
Coelorinchus fasciatus	8.16	312	2.71	
Todarodes sagittatus	4.02	6	1.33	
Nezumia leonis	1.76	168	0.58	
Dentex macrophthalmus	1.72	6	0.57	
Austrogiossus microlepis	1.04	4	0.34	
pterothrissus belloci	0.34	4	0.11	
Helicolenus dactylopterus	0.24	24	0.08	
Solenocera africana	0.16	72	0.05	
Total	301.52		99.99	

DATE: 15 ,	/6/94	stop	GEAR TYPE: PT No: 1 duration		Project station: 417			
						Sition: Lat	s	2102
	start					L.ong	E	1253
time : 0	05: 23:00	05: 38:00	15 (min)	Purpose				
LOG : 7	7292.60	7293.30	0.70	Area code		:		
FDEPTH:	180	150		Gearcond				
BDEPTH:	268	272		validity				
Towing dir: 180° wire out: 500 m Speed: $28 \mathrm{kn} * 10$								
Sorted	d: 1 Kg		tal catch:	0.76		TCH/HOUR		. 04

spectes	CATCH/HOUR weight numbers		8 of tot. C	SAMP. No
Merluccius capensis, juveniles	2.20	72	72.37	1165
Synagrops microlepis	0.36	144	11.84	1163
Sufflogobius bibarbatus	0.24	52	7.89	1164
Trachurus, Juveniles	0.08	28	2.63	1166
Squalus megalops	0.08	4	2.63	
MYCTOPHIDAE	0.04	8	1.32	1167
Total	3.00		98.68	

 FOEPTH: $210 \quad 180 \quad$ Gearcond.code:

Sorted: 1 kg Total catch: 8.70 CATCH/HOUR: 104.40
SPECIES
myctophidae
rachurus capensis
Total

spectes
Merluccius capensis
Nezumia $s p$
rachurus capensis
ophius upsicephalus
sufflogobius bibarbatus
Austroglossus microlepis
chlorophthalmus punctatus
Neoharriotta pinnata
small squids
entex macrophthalmus
ongridae
synagrops microlepis
rigla lyra
MYCTOPHIDAE
pterothrissus belloci
Total

Catch/hour		- of tot. C	SAMP. No
weight	numbers		
82.60	252		1172
13.20	604	10.35	1175
6.40	36	5.02	1170
4.48	20	3.51	
4.36	104	3.42	
3.40	760	2.67	1173
2.28	4	1.79	
2.24	216	1.76	1174
2.00	4	1.57	
0.88	8	0.69	
0.88	4	0.69	
0.56	12	0.44	
0.44	56	0.35	
0.32	4	0.25	
0.04	28	0.03	1171
0.00	8		
0.00	8		
124.08		97.33	

species	CATCH/HOUR		of tot.	SAMP N N
Engraulis capensis	9.92	2304	65.61	1180
Trachurus, Juveniles	4.88	1208	32.28	1176
Sufflogobius bibarbatus	0.08	8	0.53	1181
MYCTOPhidae	0.08	24	0.53	1179
Saxdinops ocellatus	0.08	128	0.53	1178
Merluccius capensis. juveniles	0.08	40	0.53	1177
Total	15.12		100.01	

species

Galeichthys feliceps
Etrumeus whiteheadi
Merluccius capensis, juvenile
Engraulis capensis
chelidonichthys capensis
Galeus polli
Total

CATCH/HOUR		B OF TOT. C	SAMP.NO
weight	numbers		
3.49	7	45.44	
3.36	144	43.75	1186
0.42	18	5.47	
0.18	18	2.34	
0.18	6	2.34	
0.06	6	0.76	
7.69		100.12	

spectes
Trachurus capensis
trumeus whiteheadi
Total

CATCH/HOUR		OF TOT. C	SAMP.NO.
weight	numbers		
0.60	go	75.00	1187
0.20	8	25.00	1188
0.80		100.00	

SPECIES
Etrumeus whiteheadi
Sardinops
Trigla lyra
Merluccius capensis, juveniles
Galeichthys feliceps
Trachurus, Juveniles
Total

SPECIES	CATCH/HOUR weight numbers		- of tot c	SAMP. NO
Chelidonichthys capensis	26.72	1493	68.39	
Trachurus capensis	6.56	1098	16.79	
Galeichthys feliceps	2.26	4	5.78	
Engraulis capensis	1.69	469	4.33	1195
Etrumeus whiteheadi	1.02	42	2.61	1193
Sardinops ocellatus	0.53	98	1.36	1194
Merluccius capensis, juveniles	0.11	21	0. 28	
Sufflogobius bibarbatus	0.11	${ }^{7}$	0.28	
argentinidae	0.07	18	0.18	
Total	39.07		100.00	

species
Engraulis capensis
Trachurus capensis
trumeus whitehead
Merluccius capensis, juveniles triclidae

Total

CATCH/HOUR		- of tot.	Samp, no
weight	numbers		
506.80	15660	69.87	1197
114.00	19512	13.57	1198
95.28	47664	11.34	1196
37.20	16920	4.43	1199
5.52	984	0.66	
1.08	552	0.13	
839.88		100.00	

```
                                    PROJECT STATION: 429
```



```
TIME :08:03:00 08:10:00 7 (maration (min) purpose code: 1
TIME :08:03:00 08:10:00 7 (min) Purpose code: l
```



```
    Sorted: 1 kg Total catch: 19.09 CATCH/HOUR: 163.63
```

spectes
Callorhinchus capensis
Mustelus palumbes
chelidonichthys capensis
Merluccius capensis. juveniles Trachurus, Juveniles
Sufflogobius bibarbatus
Austroglossus microlepis Small squids
Shrimps, small, non comm.
Total

SPECIES
Trachurus, Juveniles
Merluccius capensis, juveniles
Sufflogobius bibarbatus
Callorhinchus capensis
Etrumeus whiteheadi
Chelidonichthys capensis
Smald squids
Sardinops ocellatus
Total

CATCH/HOUR		- of tot. c	SAMP. NO
weight	numbers		
96.84	16056	29.60	1202
80.64	900	24.65	1204
58.68		17.94	
50.10	30	15.31	
28.80	4536	8.80	1203
8.52	30	2.60	
3.24	1368	0.99	
0.36	36	0.11	
327.18		100.00	

species
Engraulis capensis
Trachurus, Juveniles
sardinops ocellatus
Etrumeus whiteheadi
Sufflogobius bibarbatus
chelidonichthys capensis
Merluccius capensis, juveniles

CATCH/HOUR		* OF TOT. C SAMP	
weight	numbers		
2.40	600	44.44	1206
1.77	316	32.78	1205
0.57	32	10.56	
0.22	120	4.07	
0.19	88	3.52	
0.09	63	1.67	
0.06	63	1.11	
0.03	13	0.56	
5.33		98.71	

Total

species	CATCH/HOUR		of tot. C	SAMP. NO
	weight.	numbers		
Etrumeus whiteheadi	9.12	1488	73.55	1207
Trachurus, Juveniles	3.16	592	25.48	1208
Engraulis capensis	0.08	12	0.65	
Merluccius capensis, juveniles	0.04	4	0.32	
Small squids	0.04	4	0.32	
Total	12.44		100.32	

species
Chelidonichthys capensis Thyrsites atun
ithognathus auret
Trachurus, Juveniles Etrumeus whiteheadi Sma1l squids Merluccius capensis Engraulis capensis Hyperoglyphe moselif Sardinops ocellatus
Austroglossus microlepis Trichiurus lepturus Sufflogobius bibarbatus

CATCH/HOUR			
wight	numbers	OF TOT. C	SAMP.NO.
154.84	310	31.53	
79.55	283	16.20	1210
74.52	37	15.17	1212
52.65	35110	10.72	
50.71	2981	10.33	1213
33.68	4065	6.86	1209
14.32	7161	2.92	
10.84	503	2.21	1211
10.45	1471	2.13	1214
4.94	4	1.01	
2.32	426	0.47	
1.16	39	0.24	
0.75	2	0.15	
0.39	271	0.08	
491.12		100.02	

Total

sPECIES
Merluccius capensis, juveniles
Sufflogobius bibarbatus

Sufflogobius bibarbatus
MYCTOPHIDAE
total

CATCH/ROUR		OF TOT. C	SAMP. no
Weight	numbers		
180.00	4896	97.34	1215
3.00	3600	1.62	
1.20	600	0.65	
0.72	72	0.39	
184.92		100.00	

PROJECT Station: 435
DATE: 19/6/94 GEAR TYPE: PT No:1 POSITION:Lat S 2423

 Sorted: 2 kg Total catch: 2.00 CATCH/HOUR: 12.00

SPECIES	catch	- of tot c	SAMP . NO.
	weight		
myctophidae	12.00	100.00	
Total	12.00	100.00	

species
Merluccius capensis, female
Helicolenus dactylopterus
Merlucius capensis, male
Merluccius paradoxus, female
Lophius upsicephalus
Coelorinchus fasciatus
Galeus polli
Solenocera africana
Nezumia leonis
Epigonus denticulatus
portunidae
Lepidopus caudatus
Merluccius paradoxus, male
Genypterus capensis
Todarodes sagittatus
Coelorinchus coelorhinc. polli
MYCTophidAe
Schedophilus huttoni
Trachurus capensis
Austroglossus microlepis
Total

CATCh/HOUR		8 of tot. C	SAMP : No
weight	numbers		
682.00	824	55.78	1218
185.00	3020	15.13	
120.00	224	9.81	1219
98.80	352	8.08	1216
48.70	32	3.98	
25. 20	880	2.06	
13.40	300	1.10	
10.00		0.82	
9.80	640	0.80	
5. 60	180	0.46	
5.20	320	0.43	
3.70	8	0.30	
3.20	8	0.26	1217
2.94	6	0.24	
2.58	4	0.21	
2.00	20	0.16	
2.00	240	0.16	
1.26	2	0.10	
0.92	4	0.08	
	6	0.03	
1222.70		99.99	

Spectes
Merluccius paradoxus, female
Trachurus capensis
Merluccius paradoxus, male
Helicolenus dactylopterus
Nezumia leonis
Brama brama
Galeus polli
Lophius upsicephalus
Todarodes sagittatus
Epigonus denticulatus
Squalus megalops
CMLOROPHTHALMIDAE
PORTUNIDAE
TOtal

CATCH/HOUR Weight			
numbers	OF TOT. C	SAMP.NO	
141.38	543	36.55	1221
101.43	188	26.22	1220
53.07	83	13.72	1222
28.95	765	7.48	1223
13.20	360	3.41	
12.60	8	3.26	1224
8.85	293	2.29	
6.78	2	1.75	
6.60	23	1.71	
5.70	263	1.47	
3.23	8	0.83	
3.08	120	0.80	
1.95	60	0.50	
386.82		99.99	

spectes
Merluccius capensis, female
Merluccius capensis, male
Merluccius paradoxus, female
Helicolenus dactylopterus
Trachurus capensis
Todarodes sagittatus
Nezumia leonis
Lophius upsicephalus
CHLorophthalmidae
Galeus polli
Epigonus denticulatus
Merluccius paradoxus, male
Merluccius capensis, juveniles
Tolal

CATCH/HOUR weight numbers		Q of tot.	
455.60	436	51.05	1228
202.40	300	22.68	1227
61.20	340	6.86	1226
52.40	1320	5.87	1229
28.08	70	3.15	1230
24.72	36	2.77	
24.64	262	2.76	
20.30	28	2.27	
9.46	378	1.06	
8.12	204	0.91	
3.08	162	0.35	
2,36	16	0.26	1225
0.08	8	0.01	
892,44		100.00	

species
Trachurus, Juveniles
Etrumeus whiteheadi
Engraulis capensis
Thyrsites atun
Sardinops ocellatus
TRIGIIDAE
Sufflogobius bibarbatus
Small squids
Total

CATCH/HOUR		of tot. c samp no	
weight	numbers		
417.27	88020	49.96	1232
287.18	76336	34.38	1231
80.51	11967	9.64	1234
21.82	5	2.61	
21.60	3976	2.59	1233
4.42	2553	0.53	
1.47	393	0.18	
0.98	393	0.12	
835.25		100.01	

species	Catch	HOUR	- of tot.	SAMP . NO.
	weight	numbers		
Sufflogobius bibarbatus	6.00	3312	62.50	1235
merluccius capensis, juveniles	2.04	948	21.25	1236
trachurus. Juveniles	1.20	372	12.50	1237
Small squids	0.36	36	3.75	

SPECIES	CATCH/HOUR		8 OF TOT. C	SAMP.NO.	
	weight	numbers			
Merluccius capensis, juveniles	1.44	36	64.00	1238	
Trachurus capensis	0.81	9	36.00		
Total		2.25		100.00	

Total

Merluccius capensis, juveniles Trachurus, Juveniles

Total

CATCH/HOUR		OF TOT. C	SAMP. NO
weight	numbers		
0.24	102	57.14	1242
0.18	72	42.86	1241
0.42		100.00	

DATE: $23 /$					project station: 445					
	/6/94		GEAR TYPE: PT NO: 7 duration			Sition:lat	s	2213		
				Long	E	1354				
TIME :00:15:00 00:30:00 15 (min) purpose code:										
LOG : 8832.80 8833.70 0.90 Area code										
FDEPTH: 1010 Gearcond.code:										
BDEPTH: 98 98 validity code:										
Towing dir: 324^{*} Wire out: 150 m Speed: $41 \mathrm{kn*10}$										
Sorted	d: 6 K				tal catch:	119.00		H/HOUR :		

species
Etrumeus whiteheadi
Engraulis capensis
Trachurus capensis
Merluccius capensis, juveniles
sardinops ocellatus
rotal

CATCH/HOUR		of tot. C samp.	
weight	numbers		
260.80	61768	54.79	1244
176.00	18972	36.97	1243
34.40	1360	7,23	1246
2.40	1520	0.50	1247
2.40	1520	0. 50	1245
476.00		99.99	

Annex V Biomass and numbers

Total biomass (tonnes) of pilchard, Sardinops ocellatus, and total number per 1 cm length class (in millions) per area.

Area	Baia dos Tigres	$16^{\circ} 40-17^{\circ} 15$	17 ${ }^{\circ} 15-17^{\circ} 45$	$18^{\circ} 00-21^{\circ} 00$	$23^{\circ} 00-23^{\circ} 30$
Size of the Area (nm^{2})	35.4	166.7	99	668	144
Mean Sa value ($\mathrm{m}^{2} / \mathrm{nm}^{2}$)	14432	3530	756	46	
Total biomass (tonnes)	108325	131190	16206	3127	712
No. per length class (millions): 6					78
No. per lengh 7					97
8			5	48	14
9			34	144	34
10		3	9	82	37
11		5	7	4	
12		8	7	1	
13		6	1	15	
14			1	47	
15				11	
16			1	3	
17			2	1	
18		1	2		
19		1	5		
20	53	1	16		
21	552	127	52		
22	539	450	45		
23	184	553	33		
24	39	261	16		
25		22	8		
26		8	2		
27		3	1		
Sum	1367	1449	247	356	260

Total biomass (tonnes) of round herring, Etrumeus whiteheadi, and total number per 1 cm length class (in millions) per area.

Area	$16^{\circ} 40-17^{\circ} 15$	170 $15-19^{\circ} 15$	19 ${ }^{\circ} 50-21^{\circ}$	23 ${ }^{\circ} 0-25^{\circ} 15$
Size of the Area (nm^{2})	128	328	645	869
Mean Sa value ($\mathrm{m}^{2} / \mathrm{nm}^{2}$)	109	50	648	
Total biomass (tonnes)	1762	1783	50299	17638
No. per length class (millions): 6				1183
7				1797
8			2	2054
9			18	854
10		1	35	234
11		4	100	34
12		7	314	40
13		4	321	32
14	2	13	185	11
15	8	37	188	
16	24	27	440	
17	67	3	466	
18	27		204	
19			62	
20			17	
Sum	128	96	2352	6239

Total biomass (tonnes) of anchovy, Engraulis capensis, and total number per 1 cm length class (in millions) per area.

Area	$17^{\circ} 07-17^{\circ} 15$	$17^{\circ} 15-18^{\circ} 15$	$19^{\circ}-21^{\circ}$	$21^{\circ} 00-23^{\circ} 30$	
Size of the Area $\left(\mathrm{nm}^{2}\right)$	122	289	783	429	
Mean Sa value $\left(\mathrm{m}^{2} / \mathrm{nm}^{2}\right)$		459	282	298	
Total biomass (tonnes)	6630	6904	22394	17000	
No. per length class (millions): 7				251	
	8	7	38	15	700
	9	5	195	31	1498
	10	34	53	84	1002
	11	75	71	97	92
	12	76	126	82	
	13	126	154	322	
	14	184	115	917	
	15	11	18	105	
Sum:	16	1		4	

Total biomass (tonnes) of horse mackerel, Trachurus capensis, and total number per 1 cm length class (in millions) per area.

Area		$\begin{gathered} 16^{\circ} 40^{\prime}- \\ 17^{\circ} 15^{\prime} \end{gathered}$	$\begin{aligned} & \hline 17^{\circ} 15^{\prime}- \\ & 21^{\circ} 00^{\prime} \end{aligned}$	$\begin{gathered} 21^{\circ} 00^{\prime}- \\ 21^{\circ} 40^{\prime} \end{gathered}$	$\begin{gathered} 23^{\circ} 00^{\prime}- \\ 25^{\circ} 15^{\prime} \\ \hline \end{gathered}$	Sum
Size of the area (nm^{2})		730	9224	2560	796	13310
Mean Sa value ($\mathrm{m}^{2} / \mathrm{nm}^{2}$)		606	1003	255	124	
Total Biomass (tonnes)		61589	1331835	101873	10485	1505782
No. per length class (mill.)	6			3	8	11
	7	10	2480	4	251	2745
	8	13	3370	18	801	4202
	9	18	5660	26	230	5934
	10	19	3750	2	1	3772
	11	11	3000		19	3030
	12	26	4070	54	14	4164
	13	431	8050	258	14	8753
	14	1540	13500	649	29	15718
	15	519	9020	426	6	9971
	16	73	4220	235	15	4543
	17	23	2060	552	12	2647
	18	19	1230	475	50	1774
	19	19	674	266	12	971
	20	1	382	90		473
	21		274	51		325
	22	17	490			507
	23	17	528	22		567
	24		598	9		607
	25		216	1		217
	26		70	1		71
Sum		2756	63642	3142	1472	71012

Annex VI Length frequencies of different areas

Area $18^{\circ} 00-20^{\circ} 00$

Amnex VII Length-weight relations

HORSE MACKEREL LENGTH WEIGHT
IN AREAS $19^{\circ} \& 20^{\circ}$

Annex VIII Reproductive status

PILCHARD BIOLOGICAL DATA

$16^{\circ}-17^{\circ} S$

Length Class	n	Mean Weight	$\begin{array}{r} \text { Sex } \\ \text { Ratio } \\ \hline \end{array}$	\% per Maturity Stage					Mean Gonad Weight
				1	2	3	-	5	
14,0-19,9	insufficient number of observations								
19,0-19,9	12	60,64	0,67	25	50	25			1,38
20,0-20,9	13	70,93	0,46	38	16	23	15	8	1,11
21,0-21,9	20	80,45	0,60	45	40	10	5		1,15
22,0-22,9	20	90,47	0,60	10	15	30	30	15	2,19
23,0-23,9	20	102,35	0,65	5	5	30	35	25	3,04
24,0-24,9	11	115,28	0,36		18	36	36	9	3,43
25,0-28,9	insufficient number of observations								

$20^{\circ}-21^{\circ} \mathrm{S}$

Length Class	n	Mean Weight	$\begin{gathered} \text { Sex } \\ \text { Ratio } \end{gathered}$	\% per Maturity Stage					Mean Gonad Weight
				1	2	3	4	5	
14,0-14,9	11	22,50	0,70	91		9			0,03
15,0-18,9	insufficient number of observations								
19,0-19,9	10	55,62	0,80	30	50	10	10		1,31
20,0-20,9	15	66,37	0,73	33	33	33			0,87
21,0-21,9	15	74,95	0,53	13	47	20	7	13	1,14
22,0-22,9	11	85,00	0,36	9	27	18	18	27	1,41
23,0-25,9	insufficient number of observations								

ANCHOVY BIOLOGICAL DATA

$16^{\circ}-17^{\circ} 5$

Length Class	n	Mean	Sex	\% per Maturity Stage					Mean Gonad Weight
		Weight	Ratio	1	2	3	4	5	
10,0-10,9	insufficient number of observations								
11,0-11,9	14	9,10	0,80	100					0,00
12,0-12,9	18	12,08	0,50	72	17	11			0,08
13,0-13,9	20	15,22	0,40	65	20	15			0,12
14,0-14,9	20	17,56	0,18	70	15	15			0,14
15,0-15,9	13	20,65	0,30	54	15	31			0,25
16,0-16,9	insuffi	nt numb	obser						

$18^{\circ}-19^{\circ} \mathrm{S}$

Length Class	n	Mean	Sex			aturit			Mean Gonad
		Weight	Ratio	1	2	3	4	5	Weight
10,0-12,9	insufficient number of observations								
13,0-13,9	13	14,87	0,62	92	8				0,02
14,0-14,9	20	17,50	0,33	100					0,06
15,0-15,9	11	19,63	0,30	73	27				0,13
16,0-16,9	insufficient number of observations								

$20^{\circ}-21^{\circ} S$

Length Class	n	Mean	Sex	\% per Maturity Stage					Mean Gonad Weight
		Weight	Ratio	1	2	3	4	5	
10,0-10,9	11	6,59	-	100					0,14
11,0-11,9	insufficient number of observations								
14,0-14,9	12	18,14	0,08	17	42	25		16	
15,0-16,9	insufficient number of observations								

Annex IX Fish condition factor

Pilchard condition per area: number of samples (n), mean, variance (s^{2}), and standard deviation (s).

	mean condition			
Area	n	factor	s^{2}	s
$16^{\circ}-17^{\circ}$	138	0,803	0,0028	0,053
$20^{\circ}-21^{\circ}$	100	0,747	0,0023	0,048

Anchovy condition per area: number of samples (n), mean, variance $\left(s^{2}\right)$, and standard deviation (s).

Area	n	mean condition		
$16^{\circ}-17^{\circ}$	90	0,600	0,0022	0,0471
$18^{\circ}-19^{\circ}$	62	0,572	0,0011	0,0338
$20^{\circ}-21^{\circ}$	43	0,579	0,0020	0,0452

Analysis of variance (ANOVA) of pilchard condition per 2° latitude interval: degrees of freedom (df), sum of squares (SS), mean squares (MS), and F value (Fs).

Source of Variation	df	SS	MS	FS
Among Areas	2	0,0324	0,01619	$8,811^{* *}$
$16^{\circ}-17^{\circ} \mathrm{S}$ vs $18^{\circ}-19^{\circ} \mathrm{S}$	1	0,0294	0,02940	$15,999^{* *}$
$16^{\circ}-17^{\circ} \mathrm{S}$ vs $20^{\circ}-21^{\circ} \mathrm{S}$	1	0,0128	0,01280	$6,967^{*}$
$18^{\circ}-19^{\circ} \mathrm{S}$ vs $20^{\circ}-21^{\circ} \mathrm{S}$	1	0,0014	0,00136	0,741 (ns)
Within Areas	192	0,3528	0,00184	
Total	194	0,3852		

$F_{0,05(2,192)}=3,07$
** $=\mathrm{P}<=0,01$
$\mathrm{F} 0,01(2,192)=4,79$

* $=P<=0,05$
$n s=$ not significant

Annex X Results of intercalibration experiment

Intercalibration report

An intercalibration of the 38 kHz Simrad EK-500 echo sounder / integrator systems on the R/V Dr. Fridjof Nansen ($57 \mathrm{~m}, 2700 \mathrm{HP}$), and R/V Welwitchia ($47 \mathrm{~m}, 1500 \mathrm{HP}$), was conducted on June 8,1994 , from position 1745S 1138E to 1730S 1125E. The acoustic recordings mainly consisted of plankton and mesopelagic fish. The intercalibration was performed in the standard manner, (Foote et. al 1987), Nansen sailing 0.5 nautical miles in front and to the port of Welwitchia. Both echo sounder systems had recently been calibrated using standard targets according to Foote et al. (1987), adjusted to split beam systems after Nes (1991). The vessel log on the following vessel, Welwitchia, was adjusted to Nansen's log, ensuring pairwise outputs of the integrator, relative to ground.

Contributions from fish and plankton were integrated and averaged over one nautical miles in 8 pelagic channels covering the depth interval from 5 to 500 meters. The integrator output, s_{A}, varied from 1 to $22000\left[\mathrm{~m}^{2} / \mathrm{nm}^{2}\right]$ throughout the intercalibration. The threshold and color settings of the instruments were the same in the two vessels, Table 1, and depth layers were adjusted according to the relative draft of the transducer mountings on the vessels.

The echo recordings was after the intercalibration transferred to one of the vessels, and carefully scrutinized by the instrument chiefs on the two vessels in order to validate the datasets log by log, with the intention to remove miles where the acoustic recordings were different because of the horizontal distance between the vessels. A few nautical miles was removed because of obvious \log differences after a 90 degree course change, and some because of air bubble attenuation on Welwichia. A total of 58 valid pairvise observations have been included in the comparison.

Fig. 1 show the area backscattering coefficients recorded during the intercalibration, and Fig. 2 show a regression on the two datasets, with 95% confidence belts for the regression line indicated. Forcing the regression through the origo 0,0 yields an estimate of the slope of 1.038, indicating that Welwitcia's values are slightly higher than Nansens. In a pairvise test, however, the difference is not significant ($\mathrm{p}=0.28$). The observed difference is within the expected accuracy of the sphere calibration method, 0.1 dB .

Table 1 Settings of the echo sounder/echo integrators during the intercalibration.			
Echo sounder setting	R.V.Dr. Fridtjof Nansen	R.V.Velwitschia	Comments
2 way beam angle	-21.0	-20.8	Spec. from Simrad
S_{v} Transducer gain	28.1	27.9	Does not affect integration
TS Transducer gain	28.1	27.9	Does not affect integration
-3 dB beam angle	6.8	6.7	Does not affect integration
Offsets	$0.00,0.04$	$0.0,-0.01$	
Integrator threshold All channels	-80 dB SV	-80 dB SV	
SV colour minimum	-75 dB SV	-75 dB SV	

Fig.1. Area backscattering coefficients from R/V Dr. Fridjof Nansen and R/V Welwitchia during the intercalibration survey track. Two large values are omitted from the plot.

Fig.2. Linear regression between the area backscattering coefficients with 95% confidence belts indicated. Logarithmic scale.

Annex XI Additional experiments

In situ target strength measurements

Target strength measurements in situ was conducted on horse mackerel and hake using the split beam sonde, at depths up to 300 meters. The basic setup during these measurements is shown below:

TS somde, R/V Dr. Fridjof Nansen

The main advantage with this system is its ability to resolve layers and shoals into single fish by reducing the pulse volume compared to the hull mounted transducer. This ensures a high signal to noise ratio for the target strength measurement, as well as reducing the probability for multiple target to be accepted as single targets. When sufficiently pure concentrations of fish occurred during the survey, 1-3 hours were spent on one TS-station, indicated in the station charts. High resolution target strength data on hake closer than one meter from the seabed was recorded at 300 m depth, and experiments on close bottom echo integration on single hake, $0.2-0.5$ meters from the bottom was successfully conducted using the TS-sonde. The data will be analyzed and presented at a later stage.

School measurements with the SA-950 multibeam sonar

The Simrad SA-950 sonar was run during most of the survey. The sonar was connected to a HP-9000/712 computer, logging detected school data via the ethernet. The sonar was used in side looking mode, producing a hardcopy output of schools detected within $50-150$ or $50-300 \mathrm{~m}$ starboard. All detected schools were measured by the school recognition software developed at IMR by Misund and Totland (1993), and stored to file for later analysis.

Quantitative measurements

The sonar was calibrated in Baía dos Tigres, Angola, using a target of 10 air filled, hard, plastic 11 inch diameter trawlfloats. One of these floats was measured to be -23.5 dB ($\mathrm{SD}=0.5 \mathrm{~dB}$) using the 120 kHz split beam echo sounder. Having almost the same wavelength-to size ratio to the large-air filled target, it is reasonable to believe that the TS at 95 kHz is close to the target strength measured at 120 kHz . The total target of 10 should then be about TS $=-23.5+10 \operatorname{logn}=-13.5 \mathrm{~dB}$. Several passes were made, recording this target by the school recognition software. Within the recognition software a computation the target and approximate echo strength is made, simply by adding each colour pixel value (1-64) over the entire school area. This parameter, in the output files called count, could be calibrated to approximate absolute SV, using the measured TS of the calibration target.

Comparative measurements

From the vertical echo sounder, the average school size in an area is determined by echo integration. The echo sounder has a very low sampling volume at the depths where the bulk of the pilchard was recorded during the survey, $4-30 \mathrm{~m}$, and the biomass estimate will be sensitive towards school avoidance reactions during the survey. Analysing the area density of schools detected by the sonar in the area covered to the starboard of the vessel, from $50-150 \mathrm{~m}$, computations of comparative biomass estimates may be made using the previously computed average school size.

The data will be analyzed and presented later.

School measurements with the SA-950 multibeam sonar

The Simrad SA- 950 sonar was run during most of the survey. The sonar was connected to a HP-9000/712 computer, logging detected school data via the ethernet. The sonar was used in side looking mode, producing a hardcopy output of schools detected within $50-150$ or $50-300 \mathrm{~m}$ starboard. All detected schools were measured by the school recognition software developed at IMR by Misund and Totland (1993), and stored to file for later analysis.

Quantitative measurements

The sonar was calibrated in Baía dos Tigres, Angola, using a target of 10 air filled, hard, plastic 11 inch diameter trawlfloats. One of these floats was measured to be -23.5 dB ($\mathrm{SD}=0.5 \mathrm{~dB}$) using the 120 kHz split beam echo sounder. Having almost the same wavelength-to size ratio to the large-air filled target, it is reasonable to believe that the TS at 95 kHz is close to the target strength measured at 120 kHz . The total target of 10 should then be about $\mathrm{TS}=-23.5+10 \log n=-13.5 \mathrm{~dB}$. Several passes were made, recording this target by the school recognition software. Within the recognition software a computation the target and approximate echo strength is made, simply by adding each colour pixel value (1-64) over the entire school area. This parameter, in the output files called count, could be calibrated to approximate absolute SV, using the measured TS of the calibration target.

Comparative measurements

From the vertical echo sounder, the average school size in an area is determined by echo integration. The echo sounder has a very low sampling volume at the depths where the bulk of the pilchard was recorded during the survey, $4-30 \mathrm{~m}$, and the biomass estimate will be sensitive towards school avoidance reactions during the survey. Analysing the area density of schools detected by the sonar in the area covered to the starboard of the vessel, from $50-150 \mathrm{~m}$, computations of comparative biomass estimates may be made using the previously computed average school size.

The data will be analyzed and presented later.

Trawl experiments

Experiments using the constraint technique on bottom trawl doors have been conducted using the $7.8 \mathrm{~m}^{2}$ Tyborøn trawldoors on the Gisund Super bottom trawl, holding 40 m sweeps. The method is described by Engås \& Ona (1991 and 1993).

A constant doorspread of about 52 m was achieved at all depths sampled, Figure 1, compared to a varying doorspread of $52-69 \mathrm{~m}$, increasing with depth, when the trawl was shot without constraining rope between the warps. The results from the trials will be reported to the Catch Division, IMR.

Figure 1 Door door spread as a function of depth for Gisund Super, Tyborøn doors.
Upper curve: normal spread
Lower curve: with constraining rope

[^0]: * Unadjusted underestimate due to fish off the bottom.

