

SURVEYS OF THE FISH RESOURCES OF NAMIBIA

Cruise Report No $2 / 95$

Part I
Surveys of the hake stocks
22 April - 28 May 1995

Part II

Surveys of the ofishore and inshore horse mackerel stock

$$
\text { 1-22 June } 1995
$$

The DR FRIDTJOF NANSEN RESEARCH PROGRAMME is sponsored by the Norwegian Agency for Development Cooperation (NORAD) with organisational support from the Food and Agriculture Organization of the United Nations (FAO), and the United Nations Development Programme (UNDP). The programme in Namibia is organized and planned under agreements between NORAD, Namibian authorities and the Institute of Marine Research, Norway. Its execution is the responsibility of the Institute of Marine Research, Bergen in cooperation with the Ministry of Fisheries \& Marine Resources of Namibia.

The programme has comprised the following surveys:

Survey	$1 / 90$	25 January to 19 March 1990
$"$	$2 / 90$	27 May to 20 June 1990
$"$	$3 / 90$	11 September to 6 October 1990
$"$	$1 / 91$	25 January to 23 March 1991
$"$	$2 / 91$	23 October to 16 December 1991
$"$	$1 / 92$	23 April to 21 June 1992
$"$	$2 / 92$	20 October to 16 December 1992
$"$	$1 / 93$	20 January to 19 March 1993
$"$	$2 / 93$	21 April to 25 May 1993
$"$	$1 / 94$	19 January to 21 February 1994 (First survey with the new RV 'Dr. Fridtjof Nansen'.)
"	$2 / 94$	26 April to 24 June 1994
$"$	$3 / 94$	19 October to ?? December 1994
$"$	$1 / 95$	16 January to 19 February 1995

SURVEY OF THE FISH RESOURCES OF NAMIBIA

Preliminary Report: Cruise No 2/95

Part I
Survey of the hake stocks
22 April - 28 May 1995

by

E. Ona, T. Strømme

Institute of Marine Research
P. O. Box 1870 Nordnes

N-5024 Bergen, Norway

Institute of Marine Research
Bergen, 1996

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1
1.1 General objectives 1
1.2 Objectives of survey $2 / 1995$ 1
1.3 Participation 3
1.4 Narrative 3
CHAPTER 2 HYDROGRAPHY 8
CHAPTER 3 RESULTS OF THE ACOUSTIC AND TRAWL SURVEY 18
3.1 Discussion of methods 18
3.2 Southern Region, Orange River to St. Francis Bay 21
3.3 Central Region, St. Francis Bay to Ambrose Bay 27
3.4 Northern Region, Ambrose Bay to Cunene River 33
CHAPTER 4 CONSIDERATIONS ON THE SURVEY RESULTS 38
Annex I Size composition of main stocksAnnex II The size composition of hake stocks split into length cohorts throughoptimizing techniques
Annex III Records of fishing stations
Annex IV Instruments and fishing gear used
Annex V Various attempts to combine trawl estimates and acoustic estimates of pelagichake
Annex VI Differences in catchability of demersal fish due to the presence of a tickler chain

CHAPTER 1 INTRODUCTION

1.1 GENERAL OBJECTIVES

Following an offer from NORAD extended through FAO and UNDP, an agreement was reached in Windhoek in January 1990 between the UNDP Resident Representative and Namibian authorities for the execution of a programme of surveys of the fish resources of the Namibian shelf with the RV 'Dr. Fridtjof Nansen'.

The main objectives were agreed as follows:

Abstract

To describe the distribution, composition and abundance of the most important fish resources. Small pelagic fish, including horse mackerel, pilchard and anchovy would be investigated by the acoustic integration method combined with sampling with mid-water and bottom trawls. A swept area trawl survey programme would be used for the demersal stocks. All catches would be sampled by species, weight and numbers, including biological sampling of the commercially important stocks.

To carry out environmental studies including recording of surface temperature on a continuous basis and hydrographic sampling on a series of fixed profiles.

1.2 OBJECTIVES OF SURVEY $2 / 1995$

The main objectives were to continue to monitor the abundance, geographic distribution and size composition of the hake stocks within the Namibian EEZ and to describe the trends in development of the hake stocks. These objectives conform with the aim set by the Government White Paper of rebuilding the hake stocks. As secondary objectives, the lesser abundant, but commercial important species as monk, sole and kingklip would be studied in detail as these species form the bycatch of hake survey in Namibia. As part of the hake research, environment parameters, as temperature, salinity, dissolved oxygen where recorded at each trawling station in order to improve knowledge on the influence of the physical environment on the hake distribution. On this particular survey, an acoustic current Doppler profiler (ADCP) was also used to monitor the general current pattern in the survey area, and a current meter data rig holding three current meters was deployed for 18 days off Walvis Bay at position $23^{\circ} 00^{\prime} \mathrm{S} 13^{\circ} 34^{\prime} \mathrm{E}$.

Apart from standardized catch rates of hake and other demersal fishes, the biological sampling programme included sampling of otoliths of hake and monk, individual length weight measurements, and also a series of morphometric characters on hake.

The acoustic system was used to observe possible mid-water occurrence of the hakes. The survey design for the swept-area trawl programme was based on a semi-random distribution of hauls along regular transects perpendicular to the coast. The transect distance was normally 20 nm , except in the very southern part where the distance was 30 nm due to a persistent lower density of fish observed during the previous period of the survey programme. On the slope the stations were laid out to cover the depth ranges of the two hake species. The on-shelf stations where laid out 10 to 15 nm apart until the zero density line for hake were found. Biomass estimates of hake were based on post stratification by depth and density aggregations. Different methods for correcting the bottom trawl estimate for hake above the headline of the bottom trawl are investigated. Additional research objectives on this particular survey included:

Optimize settings of the acoustic instruments in order to improve registration of hake in the pelagic region, in particular when mixed with plankton.

Carry out experiments to assess vertical avoidance of hake during the trawling process, to better understand how the bottom trawl density estimate should be accordingly corrected.

Carry out in situ target strength measurements of hake at selected stations where specific length groups of hake were trawled.

Monitor and record the trawl performance, in order to document the efficiency of the warp constraining method.

Special survey considerations:

A tickler chain was mounted to improve the catchability of monk and sole. In order to test its performance on the catchability of the main demersal species the chain was fitted on every second bottom trawl haul only (Annex 6).

1.3 PARTICIPATION

The scientific staff consisted of:

From Ministry of Fisheries \& Marine Resources (MFMR), Swakopmund:
Hilma ASINO (until 12/5), Filimon DAUSAB, Johnny GAMATHAM, Hashali HAMUKUAYA (from 14/5), Heinrich LESCH, Lima MAARTENS (until 12/5), Heidrun PLARRE (from 14/5), Malakia SHIMHANDA, Lizette VOGES (until 12/5).

From Sea Fisheries Research Institute (SFRI), Cape Town:
Alan J. BOYD (until 27/4).

From Institute of Marine Research (IMR), Bergen:
Oddgeir ALVHEIM, Svein FLOEN, Terje HAUGLAND, Erling MOLVAER, Egil ONA (until 12/5) and Tore STRØMME (from 12/5).

1.4 NARRATIVE

The course tracks with the positions of the fishing and hydrographic stations are shown in Figures 1 a-c.

The vessel left Cape Town on the morning of 20 April. Calibration of the ADCP started during the steaming northwards to Orange River where the demersal survey commenced. Trawling was mainly carried out during daylight hours. CTD-stations were taken at most trawl stations in order to map environment conditions in relation to fish distribution. In the Orange Bank area the ADCP was collecting data on CTD stations, trawl stations and while steaming, in order to improve instrument settings for data collection. From Lüderitz to Cunene River ADCP profiles were collected on each CTD station and along selected transects across the shelf steaming at 8 knots. In situ target strength (TS) measurements were collected at several localities by lowering the a pressure stabilized 38 kHz transducer on 400 m split beam cable, the "TS sonde" to about 50 m above the fish, or until the fish was clearly separated in single fish traces. Investigations of fish vessel avoidance were conducted from a stationary skiff, using a portable Simrad EY-500 echosounder. Observations were made both while the main vessel were steaming and trawling past the stationary skiff. On 9 May a moored rig holding three current meters was deployed west off Walvis Bay in position $23^{\circ} 01.1^{\prime} \mathrm{S} 13^{\circ} 33.7^{\circ} \mathrm{E}$. The ADCP was collecting data near the moored
rig for two hours immediately after the mooring and four CTD stations were made near the rig. On May 11, the vessel called on Walvis Bay for crew change.

The vessel left for the last leg of the survey on 14 May after some delay due to faults in the hydraulic system. The work was continued northwards following the standard grid pattern and the northern border was reached on 26 May. On return to Walvis Bay the moored buoy was retrieved and arrival in port was on the morning of 28 May.

For most part of the survey the weather conditions were favourable, and no regular work had to be interrupted. However, the abundance of jellyfish in Namibian waters has been increasing during the last year and caused about ten trawl stations to be aborted in this survey. Densest concentrations were observed on the inner shelf ($150-250 \mathrm{~m}$) between Lüderitz and Conception Bay where most trawl stations were cancelled. Occasionally the jellies also caused problems on the slope. The survey was completed with 35 sea-days and two days lost in port for extraordinary maintenance. 38-40 days must be considered as optimal for this survey task and would allow some additional time for experimental work. 184 bottom trawl 1 pelagic trawl and 184 CTD-stations were sampled.

One of the suggested objectives prior to the survey, namely to map the distribution of horse mackerel in the survey area of the hakes was partly omitted, as an optimum setting of the acoustic instruments for the detection of hake would not be obtained if the entire depth distribution of horse mackerel should be covered. The use of elevated ping rate and bottom locked, 250 m observation depth for all devices connected to the sounder, prevented a full coverage of the upper layers when working in deep waters.

Figure 1a
Southern Region (Orange River to St. Francis Bay). Course tracks, fishing stations and hydrographic stations.

Figure 1b Central Region (St. Francis Bay to Ambrose Bay). Course tracks, fishing stations and hydrographic stations.

Figure 1c
Northern Region (Ambrose Bay to Cunene River). Course tracks, fishing stations and hydrographic stations.

CHAPTER 2 HYDROGRAPHY

Sea temperature at 5 m depth was continuously recorded along the cruise track and is shown in Figures 3a-c. Strong southern winds prevailed during most of the survey making conditions favorable for upwelling. The minimum surface temperatures found near the coast indicate active upwelling, and the Lüderitz upwelling cell may be identified by near shore surface temperature below $13^{\circ} \mathrm{C}$.

Note that the surface temperature generally is increasing northwards until Dune Point, where the gradient reverses. This is also probably due to upwelling; north of Dune Point the shelf is narrow, and prevailing upwelling favourable winds may provoke lifting of colder water masses from deeper levels than further south. However, this may also be due to a temporal rather than a spatial variation, as the northern part was surveyed some days after the central part, a steady upwelling favourable wind will also lift up water masses from increasingly deeper levels.

The relative more intense upwelling in the Northern Region is also confirmed by the vertical sections, shown in Figures 2a-b. Comparing the sections at Hottentot Point, close to the Lüderitz upwelling cell, and the Dune Point in the northern part, we note that the horizontal temperature gradient in the surface layers provoked by the upwelling is about twice as big in the northern section.

Oxygen profiles were recorded at all fishing stations on the shelf from Holland Bird Island and northwards. The distribution close to the bottom is shown in Figures 4a-c, and the vertical distribution in Figures 2a-b. Of particular interest is the bottom oxygen minimum layer $\left(\mathrm{O}_{2}<0: 5 \mathrm{ml} / \mathrm{l}\right)$ usually found between 100 and 200 m depth. The distribution of Cape hake, overlaid the bottom oxygen distribution given in Figures $4 \mathrm{a}-\mathrm{c}$, show the main part of the stock is found deeper than the oxygen minimum layer.

Some results from the ADCP current measurements south of Läderitz (by A. Boyd)

On the central Orange Bank the currents converged in a southward flow on the southernmost line. Offshore currents were northerly (apparently strong on the shelf-edge). Data on line 2 were sparse but showed southerly flow inshore. The measurements on line 3 (offshore SW from $28^{\circ} \mathrm{S}$) are reproduced in two vertical sections of N/S and E/W components in Figure 5. The north
component was strongest inshore and in an upper mid-water belt over the shelf edge, with isotachs following the bathymetry. At 150 m off the shelf edge a southerly core was observed. In the E/W profile a westerly core partly coincided with the southerly core subsurface whilst strong easterly (onshore) flow occurred in mid-water close to the coast. (Is this water moving onshore and then northwards to supply the Lüderitz upwelling cell to the north?) On the next two lines (not shown) northerly flow at 35 m was observed to predominate, reading $40 \mathrm{~cm} / \mathrm{s}$ over the shelf edge in places. Weak southward flow in mid-water (at a 500 m shelfedge station) did not coincide with a low oxygen minimum or salinity maximum, but the flow core was restricted to above the thermocline at 50 m .

Figure 2a Temperature, salinity and oxygen in the standard profiles worked.

Figure 2 b Temperature, salinity and oxygen in the standard profiles worked.

Figure 3a Orange River to St. Francis Bay. Distribution of sea temperature at 5 m depth.

Figure 3b St. Francis Bay to Ambrose Bay. Distribution of sea temperature at 5 m depth.

Figure 3c Ambrose Bay to Cunene River. Distribution of sea temperature at 5 m depth.

Figure 4a Orange River to St. Francis Bay. Distribution of Cape hake and oxygen ($\mathrm{ml} / 1$) near the bottom.

Figure 4 b St. Francis Bay to Ambrose Bay. Distribution of Cape hake and oxygen (ml / l) near the bottom.

Figure 4c Ambrose Bay to Cunene River. Distribution of Cape hake and oxygen (ml / l) near the bottom.

Figure 5 ADCP current measurements along the Panther Head transect.

CHAPTER 3 RESULTS OF THE ACOUSTIC AND TRAWL SURVEY

3.1 DISCUSSION OF METHODS

In the trawl survey programme all catches were sampled for composition in weight and numbers by species. The bottom trawl has a headline of 31 m (float line), a footrope of 47 m , headline height of $5-6 \mathrm{~m}$ and a distance between the wings during towing of about 21 m . All trawl hauls were monitored by SCANMAR trawl sensors (bottom contact, headline height, door spread and depth of restrictor). This technology allows to determine with improved accurracy the actual time the trawl is on the bottom, and also keep distances between the doors and the wings of the trawl constant. For conversion of catch rates to fish densities the area between the wings is assumed to be equal to the effective fishing area and the retention factor q is equal to 1 for all species and lengths.

With the new vessel, starting from January 1994, a new trawl gear was introduced with smaller bobbins. This gear has better bottom contact and higher catch rates for bottom dwelling species as monk and sole. For the hake species the new gear is assumed to have no difference in performance. From January 1995, a new set of bottom trawl doors, Tyborøn, type 7, (7.9 m²) was introduced in the trawl surveys for improved bottom contact. The new doors were intercalibrated with the previously used doors, Waco, during a special gear methodology survey in January 1995. No significant changes in catch efficiency for hake were observed, and it is assumed that the new doors have the same fishing power as the old doors. It is however important to note that it is imperative to use warp restrictor on the new doors on all hauls. If the restrictor is not used, the trawl will be over-spread in deep water. Using the constraining technique, a stable, effective door spread of 50 m , a wing spread of 21 m , and a vertical height of 5.5 m was recorded on average at all depths, only varying slightly with bottom substrate. The distance trawled, was measured by the GPS. Time at bottom was defined as the time from bottom contact and a proper heigth was registered by the trawl height sensor.

The problem of mid-water occurrence of hake and its effect on the swept area assessments has been discussed in earlier cruise reports.

During this particular survey several alternative methods to correct the bottom trawl estimate for off bottom hake have been reviewed on the basis of detailed acoustic measurements of vertical availability to the trawl gear.

The settings of the EK500 echo sounder have been optimized for the display, detection and scrutinizing of hake. The main task has been to be able to identify the single fish traces of deep water hake within a layer of weak scatterers, and also to detect the presence of young hake distributed extremely close to the sea bed in the shallow areas of the survey. The first task has been solved by increasing the ping repetition frequency by using a fixed bottom locked display covering 250 m above the bottom at all depths, with a 10 m wide bottom locked expanded layer. The SV-colour threshold on the echosounder display has been fixed at -67 dB , and at -72 dB at the printer, both working at $20 \operatorname{logR}$ TVG. It is important to note that this is not integrator threshold, as the integrator threshold used in the BEI system can be varied independently of the colour threshold and the integrator threshold set on the echo sounder. The main purpose of setting a lower threshold on the printout is for identification of single hake traces in the pelagic region, within layers of weaker scatterers.

During scrutinizing, the dynamic colour range was interactively reduced to dark red at about -60 dB SV, and a hard threshold, $\mathrm{SV}=-66$, was used to first identify a layer, and isolate single traces of hake. At this threshold level, a fair estimate of the contribution from large hake to the total backscattering from hake and plankton can be made. However, smaller hake, registered individually, and the weaker echoes of large hake will be strongly filtered away at this threshold level, and it is necesarry to increase the relative contribution of hake when storing the data at the non-threshold level, $\mathrm{SV}=-76$ to -80 . The actual effect of thresholding on the echo energy of hake could be learned from clean, non mixed, single fish registrations of hake at the same depths.

The single target rejection criteria in the EK500 were relaxed by the use of a high $\mathrm{TS}_{\min }$-limit, -45 dB , and a hard beam width threshold, maximum gain compensation -2.0 dB . With this setting the sounder accepts larger single fish echoes, and target strengths are computed even within plankton layers. It should be noticed that the target strength distribution is likely to be truncated in the lower end by this thresholding setting, and may therefore not be used to compute the average TS of the fish registered. This was a valuable tool as an index for fish size in the deeper hake layers, for the identification of single targets during the scrutinizing work.

For each 5 nautical mile, including at trawl stations, the echo energy from hake was isolated and stored to the database in 50 m pelagic channels, and one 10 m wide bottom locked integrator
channel. The bottom channel was further devided into 2 meter wide layers. Other fish and scatterers were roughly isolated and categorized, but should not be used for biomass estimation, as a full vertical coverage has not been made outside 200 m depth.

Measurements on pelagic hake

A standard method for correction of bottom trawl density estimates with acoustic estimates of fish off bottom have been applied with Dr. Fridtjof Nansen since 1991. During this survey several additional estimates have been made on hake biomass in order to elucidiate the relationship between trawl estimates and acoustic estimates. These additional estimates do not serve any management purpose at the present stage. The various estimates applied are explained in Annex V.

General comments on hake off bottom.

As in previous investigations off-bottom hake in mid-water constituted only a minor problem in the Southern and Central Region for the day-hauls on the shelf. For the deeper slope hauls carried out at night, the average correction was 39% in the Southern Region and 44% in the Central Region. In the north it made up an average 14% addition to the demersal biomass in the day hauls and in a more limited number of night hauls the average correction was 20% (Table 1). These corrections are higher than those applied for the same area in survey 3/94 and are believed to be representative (Table 1). Because of the generally very low densities encountered both in the bottom trawl and in the acoustic correction during the previous survey in

Table 1 Hakes. Frequency of observations of hake in midwater during trawling. No. of trawl stations with swept area densities and no. of stations with observations of hake above 5 m from bottom with acoustic density estimate (tonnes $/ \mathrm{nm}^{2}$).		
ORANGE RIVER ST. FRANCIS BAY	DAY	NIGHT
Trawl		
No. stations	28	23
Mean density	25.2	10.4
Acoustic obs.		
No. stations	6	12
Mean density	4.2	7.8
Average acou. corr.	4\%	39\%
ST. FRANCIS BAY -		
AMBROSE BAY		
Trawl		
No. stations	46	27
Mean density	12.2	8.9
Acoustic obs.		
No. stations	28	23
Mean density	2.5	
Average acou. corr.	12\%	44\%
AMBROSE BAY -		
CUNENE RIVER		
Trawl		
No. stations	37	12
Mean density	18.8	18.5
Acoustic obs.		
No. stations	28	12
Mean density	3.4	3.7
Average acou. corr.	14\%	20\%

November 94, special attention was applied in the present survey to scrutinize if there were possibilities that quantities of hake were masked in dense concentration of other fish or plankton. There were no signs of this and the acoustic system is assumed to have detected the major occurrences of hake off the bottom over the continental shelf down to 650 m .

Special measurements

The analysis of the special measurements on target strength, avoidance measurements and trawl geometry will be included in a special report on these topics.

3.2 SOUTHERN REGION, ORANGE RIVER TO ST. FRANCIS BAY

The complete record of the fishing stations is shown in Annex III. Table 2 shows the catch rates of the main commercial species standardized to $\mathrm{kg} /$ hour for the shelf and the slope separately. Compared with the survey $2 / 94$ which took place in the same period last year the mean catch rates for the hakes are about 43% lower on the shelf and almost 60% lower on the slope. A similar trend but with stronger decline was observed between May and November last year and part of that decline was ascribed seasonal migration. The mean monk catch rates have decreased to about 30% of the level of the previous survey. The fluctuations for monk are associated with the seasonal behaviour of the species effecting the catchability. The catch rate of kingklip is down to 40% of the rate in the two previous surveys. This may not be statistically significant as the previous mean catch rate of kingklip is heavily influenced by a few catches beyond $100 \mathrm{~kg} / \mathrm{hour}$, catch rates absent during this survey.

SHELF	50-259						
ST. NO.	DEP.	Hakes	Monk	Kingkiip	Soles	Squid	Other
920	88	0.9					76.6
921	147	148.8	6.1			46.5	362.4
922	173	37.6	5.0	1.8		16.4	517.1
923	175	357.0	3.5	1.0		103.4	130.8
927	173	315.8	15.6			162.6	156.2
928	161	339.1	2.1	0.2		25.4	688.6
929	157	93.9	0.8	12.9		1.3	32.0
930	139	204.3		41.1		0.2	11.6
931	175	896.8	2.1	1.5		154.0	83.2
932	182	188.3	2.3	1.2		21.4	129.6
933	171	149.8	17.9			4.4	1221.5
939	258	1982.1	7.6	1.7		49.0	1112.3
940	175	184.4		10.2	1.7	12.7	71.6
941	125	349.7					3.4
942	179	989.6		27.2	1.9		363.7
950	216	220.7		11.4	1.9	1.7	2.8
951	149	214.1					
958	237	407.0				3.6	4.1
MEAN		393.3	3.5	6.1	0.3	32.9	276.0

SLOPE 260-700 m

ST. NO	DEP.	Hakes	Monk	Kingklip	Soles	Squid	Other
924	391	139.8	6.1	6.2		0.6	53.5
925	566	30.9	10.4				267.4
926	329	288.4	11.0	5.0		7.8	1164.7
934	392	487.0		23.0		14.4	81.9
935	646	45.1				1.4	466.2
936	441	50.3		11.9		2.6	45.4
937	390	40.9					22.5
938	498	124.0		4.3		7.5	60.1
943	327	4.5					16.0
944	329	396.1	2.7	4.9		4.6	47.5
945	448	72.9	11.2	6.7		11.3	174.3
946	467	170.3		5.8		1.3	33.5
947	539	398.3				28.4	137.7
948	419	804.0	7.0	34.3		31.3	237.9
949	315	1758.2	26.1	19.1		51.8	219.9
953	330	255.6	2.0	26.5	1.8	4.5	18.5
954	421	427.4		2.8		12.6	69.0
955	627	1329.0				55.0	451.4
956	445	734.7		12.8		28.1	263.1
957	347	1362.9	35.2	54.6		115.4	271.3
961	276	1366.5	35.2			216.0	1066.8
963	339	374.0	51.0	29.3	4.7		308.5
964	469	139.4	4.2	13.5			459.6
965	577	736.9					1302.0
966	607	253.3				16.8	491.0
967	485	758.8	19.2			29.7	191.5
968	401	318.1	25.2	14.2		19.6	332.7
970	374	201.5	17.0	5.6		7.8	122.6
971	275	826.2	25.9			69.1	1981.2
973	323	2982.1				71.3	1190.0
974	403	3222.8	77.1	42.2		15.4	214.7
975	509	460.8				73.4	2037.6
976	580	669.7	7.5			161.5	997.4
977	667	669.8				128.8	529.2
MEAN		644.1	11.3	9.5	0.2	35.0	450.8

The depth distribution of the two hake species based on the catch rates converted to densities are shown in Table 3. Since the previous survey the young Cape hake in the $75-250 \mathrm{~m}$ zone have declined, while in the $250-350 \mathrm{~m}$ depth zone densities have increased. The shift is probably due to offshore migration since the previous survey. In spite of the recent increase in this depth zone, the densities are well below the figures of the May survey last year.

Table 3 3 Southern Region. Depth distribution of the two hake spacies. Mean densities in tonnes $/ \mathrm{m}^{2}$ and mean catch rates kg/hour.						
	$75-250 \mathrm{~m}$	$250-350 \mathrm{~m}$	$350-450 \mathrm{~m}$	$450-550 \mathrm{~m}$	$550-700 \mathrm{~m}$	
Cape hake	7.4	17.9	1.3			
Density	220	540	40			
Catch rate	20					
Deep w. hake		14.4	19.3	11.9	18.6	
Density	2.2	430	580	360	560	
Catch rate	65	430	11	6	7	
No. of hauls	17	11	11			

The distribution of the two hake species based on plots of densities by fishing stations is shown in Figures 5 and 6. These include the acoustic estimates of fish present above the 5 m bottom channel during trawling as discussed above. The distribution pattern of Cape hake shows an improvement since the previous survey when the only aggregations were small clusters of fish in the shallow waters. However, comparing with the distribution charts of May last year one can see that the recovery has only been slight. The deep water hake follows its typical high density bands in the 350-450 bottom depth range but with a more northern shift in its distribution gravity point than usual.

Biomass estimates based on a poststratification of the densities as shown in Figures 5 and 6, give 145000 tonnes for the Cape and 140000 tonnes for the deep water hake (Table 4), figures much in line with the findings of the previous survey. A serious drop in the biomass in the Southern Region since May 1994 is thus confirmed. The 95% confidence limits give a range of $\pm 30 \%$ on the estimate of the Cape hake and $\pm 33 \%$ of the deep water hake.

Table 4 Southern Region. Estimates of total biomass by surveys, 1000 tonnes. Year/Survey Cape hake		
Deep water hake		
$90 / 1$	130	22
$90 / 3$	130	25
$91 / 1$	113	31
$91 / 2$	80	82
$92 / 1$	200	145
$92 / 2$	160	125
$93 / 1$	210	150
$93 / 2$	180	115
$94 / 1$	200	160
$94 / 2$	240	215
$94 / 4$	150	121
$95 / 1$	145	140

Figure 5 Orange River to Francis Bay. Distribution of Cape hake. Empty squares indicate stations where Cape hake was not caught.

Figure 6 Orange River to St. Francis Bay. Distribution of deep water hake. Empty squares indicate stations where deep water hake was not caught.

The size compositions of the Cape hake from pooled samples weighted by catch rates are shown for each region by depth ranges in Annex I. There is as usual an increase of size with depth. A length frequency analysis to identify cohorts in the stock, was performed in the same way as during the four previous surveys. The results are shown in Table 5.

Table 5	Southern Region. Cape hake. Estimated age-cohorts from optimized length distributions.				
	Mean length	Sigma	Fraction of all fish	Population million N	Biomass 1000 t
	$22.5!$	1.9	0.59	512	40
	28.0	2.5	0.24	237	35
	35.0	2.5	0.08	62	17
			0.09	67	53

The dominating cohort is the 1993 year-class which is estimated to 59% of the total number of fish. The fishable part of the Cape hake in the region is estimated to 92 mill. fish with a biomass of 61000 tonnes. This is about 40% increase in the adult biomass from 35000 tonnes in November last year, it is however more than 50% less than the fishable biomass in May 1994 (130 000 tonnes).

The size composition of the deep water hake is shown in Annex I. Results from a length frequency analysis on the deep water hake is shown in Table 6. The fishable part of the stock in the region is estimated to about 116 mill. fish with a biomass of 65000 tonnes, figures very close to the previous survey (120 mill. fish and 60000 tonnes).

Table 6 Southern Region. Deep water hake. Estimated age-cohorts from optimized length distributions. Year class Mean length SigmaFraction of all fish					
1993	21.0	1.8	0.80	Population million N	Biomass 1000 t
1992	28.4	2.5	0.55	64	52
1991	36.0	3.0	0.09	98	9
older			0.055	62	30

3.3 CENTRAL REGION, ST. FRANCIS BAY TO AMBROSE BAY

Table 7 shows the catch composition for the shelf and the slope by main groups. The mean catch rates for hakes on the shelf are remarkably close to the low mean rates obtained during the previous survey both in shallow and deeper waters. The mean catch rate of monk is reduced to about 25% of the November 1994 level, while kingklip remain low as normal for this region.

Table 7 Central Region. Catch rates by main groups in swept area bottom trawl hauls, $\mathrm{kg} /$ hour.

SHELF 100-259 m

ST. NO	DEP.	Hake	Monk	Kingklip	Soles	Squid	Other
984	225	1104.2	3.5		1.8	34.9	49.1
985	245	430.2					
995	205	285.8					2.0
996	238	709.3					7212.6
1004	251	251.7				0.9	2476.3
1005	214	52.0					5599.8
1006	157	35.2					18.8
1007	188	42.8					22.2
1008	241	549.9	0.9		0.6	0.6	259.2
1013	231	93.6			1.6		23.4
1014	154	8.2				1.0	0.7
1015	138	1.9					0.5
1016	151	1919.6			11.7		28.1
1023	207	622.5	3.1				13.5
1026	134	260.8					10.7
1028	128						
1029	206	325.8				1.7	348.6
1037	246	576.9	4.0		0.7	7.3	262.1
1038	209	737.0	12.3			9.0	358.4
1039	167	167.0	1.7		0.8	0.6	637.8
1044	195	191.3	4.0		0.8	2.0	581.2
1045	153	251.5				1.1	4145.4
1046	254	251.1	2.2			0.2	16.9
1054	234	101.2	0.0		1.2		14.6
MEAN		373.7	1.3		0.80	2.5	920.1

SLOPE 260-700 m

ST.NO	DEP.	Hake	Monk	Kingklip	Soles	Squid	Other
977	667	669.8				128.79	529.2
978	602	973.8	8.0			136.1	738.8
979	503	549.4				31.7	171.6
980	464	477.1	29.1	8.0		33.6	236.3
981	355	257.1	15.6	16.1		25.6	239.5
982	272	192.1	17.8			12.8	178.4
986	369	600.3		57.8			175.2
987	441	399.2	4.4			14.5	149.1
988	572	262.9	43.6			128.5	1189.4
989	504	169.7					
990	369	415.0	6.5			56.3	275.2
991	324	689.1		32.8		17.2	326.3
994	281	479.9	2.1	2.0	2.1	7.6	31.4
997	267	489.5		0.5		2.3	47.5
998	282	91.9			0.7	3.0	261.6
999	396	28.7	11.1	17.4		34.6	227.0
1000	506	130.7				22.0	563.8
1001	609	187.4	2.6			35.2	608.5
1002	452	103.5	1.2			29.5	514.1
1003	339	495.6				54.6	151.9
1009	330	490.4				26.0	211.2
1010	412	266.0	9.4	8.5		20.9	460.0
1011	554	149.5	1.0			19.0	116.4
1012	645	257.1	3.1			115.1	301.3
1017	311	544.9				4.8	261.0
1018	380	364.1		5.8		15.7	372.0
1019	499	196.0	1.7			17.8	164.3
1020	605	51.7				57.7	152.8
1021	430	136.8				22.1	310.6
1022	318	295.5		1.3		0.1	68.3
1024	366	48.0	5.7	1.2		37.3	232.9
1025	285	291.8	0.8		0.2	6.9	152.7
1030	277	435.1	40.1		1.4	34.8	748.1
1031	294	820.5	5.3	3.4	6.1	60.1	338.2
1032	494	375.5	36.2			21.2	596.9
1033	588	478.7	11.9			17.9	505.2
1034	545	190.7	5.4			1.2	107.4
1035	449	451.3	5.0			7.7	876.9
1036	345	312.3	11.9	1.3	1.0	2.0	141.1
1040	597	182.5	8.2			19.7	364.4
1041	498	222.5	20.3			12.6	406.1
1042	400	114.6	4.0			0.2	249.2
1043	295	81.0	7.2		2.8	2.3	48.1
1047	328	63.1	2.1		0.4	3.1	37.4
1048	430	332.9	20.6				358.3
1049	639	69.0	1.2			25.3	162.4
1050	593	20.9	8.3			5.5	63.1
1051	499	126.9	6.1			23.7	289.6
1052	378	125.2	6.7	10.2		3.0	209.1
1053	331	60.8	18.1		4.6	2.0	38.7
MEAN		304.4	7.7	3.3	0.4	27.2	296.8

The density index by depth ranges of the two hake species is shown in Table 8. In the previous survey in November a strong decline of Cape hake was observed in all depth strata since May 1994. This drop is confirmed in the present survey and a further drop in the $350-450 \mathrm{~m}$ depth zone is observed. On the other hand the deep water hake rates have been rather stable over several surveys and in the $350-450 \mathrm{~m}$ depth zone a slight increase is observed.

Table 8 Central Region. Depth distribution of the two hake species. Mean densities in tonnes $/ \mathrm{nm}^{2}$ and mean catch rates $\mathrm{kg} / \mathrm{hour}$.					
	$100-250 \mathrm{~m}$	$250-350 \mathrm{~m}$	$350-450 \mathrm{~m}$	$450-550 \mathrm{~m}$	$550-650 \mathrm{~m}$
Cape hake Density Catch rate	$\begin{array}{r} 13.0 \\ 390 \end{array}$	$\begin{array}{r} 9.9 \\ 300 \end{array}$	$\begin{array}{r} 1.5 \\ 45 \end{array}$	$\begin{array}{r} 0.8 \\ 20 \end{array}$	
Deep w. hake Density Catch rate		$\begin{array}{r} 2.1 \\ 60 \end{array}$	$\begin{array}{r} 7.6 \\ 230 \end{array}$	$\begin{array}{r} 8.3 \\ 250 \end{array}$	$\begin{array}{r} 9.5 \\ 285 \end{array}$
No. of hauls	22	18	13	10	11

The biomass estimate of Cape hake for the Central Region based on post stratification is 105 thousand tonnes (Table 9). This is a confirmation of the low figures estimated on the previous survey which fall into a pattern of decline since early 1993. The recent estimate is a new record low in the time series from the Central Region. The estimate on the deep water hake is 40000 tonnes, the highest recorded in our time series. The 95% confidence limits on the estimates are $\pm 23 \%$ on the Cape hake and $\pm 18 \%$ on the deep water hake.

Figure 7 shows the distribution of Cape hake in this

Table 9 Central Region. Estimates of total biomass by surveys, 1000 tonnes.

Year/Survey	Cape hake	Deep water hake
$90 / 1$	180	4
$90 / 3$	219	6
$91 / 1$	150	6
$91 / 2$	302	13
$92 / 1$	261	15
$92 / 2$	542	15
$93 / 1$	280	12
$93 / 2$	280	20
$94 / 1$	225	30
$94 / 2$	160	30
$94 / 4$	112	16
$95 / 2$	105	40

Figure 7 St. Francis Bay to Ambrose Bay. Distribution of Cape hake. Empty squares indicate stations where Cape hake was not caught.

Figure 8 St . Francis Bay to Ambrose Bay. Distribution of deep water hake. Empty squares indicate stations where Cape hake was not caught.

Table 10	Central Region. Cape hake. Estimated age-cohorts from optimized length distributions.				
Year class	Mean length	Sigma	Fraction of all fish	Population million N	Biomass 1000 t
1993	21.9	2.3	0.64	430	29
$1992 ?$	27.0	2.8	0.24	147	19
1991	36.0	3.0	0.05	31	10
older			0.08	45	47

The results from a cohort analysis on the length distribution are shown in Table 10.

The 1993 year-class dominates with 64% of the number of fish, followed by the 1992 year-class with 23%. The older fish, 4 years and older makes up 12% of the number of fish, but 54% of the biomass. The fishable part of the population is 63 mill. fish and 53000 tonnes, a decrease in number (-9 mill.) and biomass (-4000 tonnes) to the previous survey. The non-fishable biomass is estimated to 64 mill. fish with a biomass of 54000 tonnes. This confirms the alarmingly low figures from November 1994, which set the recruitment potential of the fishable biomass considerably below the situation during in the previous years.

The more narrow distribution of deep water hake is presented in Figure 8. Results from the length frequency analysis for the deep water hake is shown in Table 11. In this population the fishable biomass is 34000 tonnes and 50 mill. fish and makes up 70% of the number of fish while the remaining 30% are fish of size smaller than 36 cm and are estimated to 8000 tonnes and 46 mill. fish.

Table 11	Central Region. Deep water hake. Estimated age-cohorts from ptimized length distributions.				
Year class	Mean length	Sigma	Fraction of all fish	Population million N	Biomass 1000 t
1993	25.4	2.5	0.15	14	1
1992	32.0	3.2	0.34	33	7
1991	38.0	3.5	0.15	14	5
1990	47.2	3.5	0.255	25	17
older			0.105	10	11

3.4 NORTHERN REGION, AMBROSE BAY TO CUNENE RIVER

Table 12 shows the catch rates by main groups for the shelf and slope separately. The mean rate for hakes shows a recovery since the previous survey with an increase of almost 100% in the deeper waters and 35% in the more shallow area. The monk catches are very close to the rates in November last year.

Table 12 Northern Region. Catch rates by main groups in swept area bottom trawl hauls, kg/hour.
SHELF $\quad 100-259 \mathrm{~m}$

ST. NO	DEP.	Hakes	Monk	Dentex	Horse mok.	Squid	Other
1055	254	29.8		3.3	0.7	1.0	4.4
1066	180	33.5		1.7	0.4		0.8
1067	251	11.4			0.1	0.04	1.5
1076	233	228.0			94.2		6.0
1077	234	141.7		0.5	2.4		1.7
1078	193	50.4			0.3		3.0
1089	229	247.0	3.5	462.4	380.2		49.7
1090	216	62.5	7.7	1.7	16.9		0.9
1092	160	411.5		234.3	376.2		301.0
1094	190	216.8		180.0	624.0		757.0
1095	254	2600.5	11.1	280.2	245.7		1379.1
1100	222	753.9	1.5	10.3	9.1		395.8
1101	189	47.6		151.2	1792.8		6.5
1102	222	124.4		168.0	3040.8		0.3
MEAN		354.2	1.7	106.7	470.3	0.1	207.7

SIOPE 260-700 m

ST.NO	DEP.	Hakes	Monk	Dentex	Horse mok.	Squid	Other
1056	313	36.5	0.5	0.3	0.02	0.9	18.8
1057	334	264.2	15.3				59.0
1058	449	126.8	38.2			7.8	459.9
1059	548	263.3	20.1			50.8	552.7
1060	651	216.3	3.7			60.1	284.9
1061	595	232.1	11.3			19.2	530.9
1062	492	142.9	170.5				669.1
1063	298	28.0	5.1	16.8		1.4	9.0
1064	281	163.2	6.3	7.1	0.5		9.0
1068	283	90.8		12.1			1.6
1069	313	566.8	152.5	403.0			772.6
1070	390	218.7	52.0			19.0	842.1
1071	594	163.4	6.8			35.3	487.2
1072	491	490.8	25.7			2.0	534.7
1073	385	96.5	22.8				404.2
1074	340	33.8	1.2			0.5	15.8
1075	289	208.6	34.4	173.6	23.3		61.6
1079	326	679.7		69.4	23.3	1.6	66.0
1080	345	1160.6	45.3	8.8	33.9	7.4	251.5
1081	450	392.7				18.9	107.8
1082	555	134.2				8.0	106.7
1083	656	123.4	12.2			17.4	290.2
1084	602	283.0	40.5			83.8	174.3
1085	498	676.5	30.1			0.7	369.3
1086	345	547.0	82.4		3.8	7.1	316.9
1087	319	284.9	17.5	5.0	16.6	4.1	51.4
1088	285	1509.7	62.0	303.4	87.3		1122.4
1091	351	1328.4	19.0			5.7	270.7
1093	277	2707.2	123.5	254.4	315.3	3.2	880.4
1096	354	682.6	49.5		5.6	15.6	392.3
1097	308	1814.3	134.2	19.1	25.3		1029.2
1098	296	2124.0	9.7	9.9			1062.2
1099	352	1138.9	12.1				641.2
1103	281	1600.4	52.8	88.6	96.4		531.3
1104	269	909.3	17.1	312.6	4.3		337.0
MEAN		612.6	36.4	48.1	18.2	10.6	391.8

Figure 9 Ambrose Bay to Cunene River. Distribution of Cape hake. Empty squares indicate stations where Cape hake was not caught.

Figure 10 Ambrose Bay to Cunene River. Distribution of deep water hake. Empty squares indicate stations where deep water hake was not caught.

Figure 9 shows the distribution of Cape hake in the Northern Region by levels of density calculated from the catch rates and with correction for fish off bottom. Compared to the previous survey when high concentrations were restricted to between the Cunene and $18^{\circ} \mathrm{S}$ such densities were now observed continuously from the Cunene to Möve Point. The present distribution resembles much the situation in May 1994.

The depth distribution of the two hake species based on catch rates converted to densities are shown in Table 13. For Cape hake there was an increase in densities between 250 and 450 m bottom depth. The densities of deep water hake have increased with record high densities in the $450-550 \mathrm{~m}$ zone.

Table 13Northern Region. Depth distribution of the two hake species. Mean densities in tonnes/ nm^{2} and mean catch rates kg /hour.					
	$100-250 \mathrm{~m}$	$250-350 \mathrm{~m}$	$350-450 \mathrm{~m}$	$450-550 \mathrm{~m}$	$550-700 \mathrm{~m}$
Cape hake	7.3	28.2	17.7	+	+
Density	220	850	530	+	+
Catch rate			0.1	3.5	13.2
Deep w. hake		4	105	400	6.3
Density		21	7	4	60
Catch rate					
No. of hauls	11				

Biomass estimates give a total of 117000 tonnes of Cape hake and 24000 tonnes of deep water hake (Table 14). For the Cape hake this represents a slight recovery since the last survey in May 1994. The deep water hake shows an increase from 10 to 24000 tonnes. The 95% confidence limits on the estimates are $\pm 19 \%$ on the Cape hake and $\pm 24 \%$ on the deep water hake.

The size compositions of the two hake species are shown in Annex I. A cohort analysis was done on the pooled length distributions of Cape hake, while it was not possible to define

Table 14 Northern Region. Estimates of total biomass by surveys, 1000 tonnes.		
Year/Survey	Cape hake	Deep water hake
90/1	180	
90/3	105 *	
91/1	200	
91/2	140	2
$92 / 1$	185	4
92/2	190	8
93/1	150	4
93/2	110	6
94/1	90	20
94/2	130	15
$94 / 4$	90	10
95/2	117	24

reasonable cohorts for the deep water hake. The so called 'fishable biomass' of Cape hake, representing fish of 36 cm and larger, constitutes 146 mill. fish with a biomass of 92000 tonnes, compared to 63000 tonnes in November 94. For the deep water hake the fishable biomass is 21000 tonnes and 35 mill. fish.

Table 15 Northern Region. Cape hake. Estimated age-cohorts.					
Year class	Mean length	Sigma	Fraction of all fish	Population million N	Biomass 1000 t
1993	24.6	2.5	0.27	83	8
1992	31.0	3.0	0.24	75	15
1991	39.9	3.5	0.29	91	38
1990	49.5	3.5	0.14	44	35
older			0.06	15	20

CHAPTER 4 CONSIDERATIONS ON THE SURVEY RESULTS

Survey effort

The present survey is the 12 th in a series started in early 1990, covering the distribution of the hake stocks over the whole Namibian shelf. Figure 11 shows the effort spent in these investigations. The survey was done with 35 sea-days, while two days were lost in port due to extraordinary maintenance. The optimal time required for a hake survey is $38-40$ days, and would allow time for a few days for methodological investigations.

Mid-water behaviour of the hake can cause problems for the trawl survey methodology. However, improved acoustic technology has made it possible to establish a technique that can reduce the effect of this behaviour on the estimates. In previous surveys (1993 to Jan. 1994) the pelagic behaviour may have caused some underestimate in the biomass, especially in the Northern Region. During the recent survey the average acoustic corrections during day time were $4 \%, 12 \%$

Figure 11 Hake survey effort 1990-95. a) Number of trawl stations by regions; b) Number of length frequency samples by regions; c) Mean number of fish in length sample.
and 14% for the Southern, Central and Northern Regions respectively. The pelagic behaviour of the hake did not constitute a major problem when assessing the stock, and there are no signs that major aggregations of hake have avoided acoustic detection.

Catch per unit effort

A summary of the estimates of the mean density of the hakes by depth strata is shown in Figure 12. After the previous survey in November it was noted that the mean densities of Cape hake have dropped in all depth zones and in all regions except for the southern shelf area $100-250 \mathrm{~m}$. Figure 12 shows that a slight recovery in the densities have taken place in the north and in the $250-350 \mathrm{~m}$ range in the south.

The densities in the shallow ranges $100-250 \mathrm{~m}$ mainly reflect the strength of the young fish, 2-3 years of age, that inhabit this zone. One should note that the densities in these nursery areas remain low and are considerably below the situation in 1990 when the programme for rebuilding the hake stocks started. It is therefore concluded that the recruitment to the fishable biomass will be low for the next two years.

Expected catch rates in fisheries will generally be proportional to the fish densities observed. As mentioned above, the densities in the Northern Region are relatively high, and this is also the area where the fishing fleet was most active during the survey. It is therefore important to keep in mind that CPUE from the fisheries can not be used as an index of the state of the stock, but only represents the situation in the limited fishing area.

Biomass estimates

Table 16 shows a summary of the biomass estimates for the two hake stocks by regions and surveys. Since May 1994, the estimated total biomass of hakes has dropped sharply from 790000 to 490000 tonnes in November, with signs of slight recovery to 575000 tonnes in the recent survey. However, the general trend is of decline since mid 1993, as visualized in Figure 13d.

Figure 12 Estimated mean densities in depth strata by surveys. Mean densities in tonnes $/ \mathrm{nm}^{2}$.

When splitting the biomass by fishable/non-fishable categories the fishable stock of Cape hake shows the same trend of decline since 1993 as for the total biomass, and the adult stock of Cape hake is now lower than in 1990, Figure 13a. The deep water hake, Figure 13b, increased during the first years of the programme and have in the later years fluctuated between 120000 and 200000 tonnes with a sudden temporary drop in November, probably due to seasonal migration. Recruits or non-fishable biomass is below average (Figure 13c) and is also below the level in 1995. Generally one can therefore conclude that the state of the Cape hake is not better in 1995 than in 1990.

TOTAL BIOMASS												
	FebMar 1990	$\begin{aligned} & \text { Sep- } \\ & \text { Oct } \\ & 1990 \end{aligned}$	$\begin{aligned} & \text { Jan- } \\ & \text { Feb } \\ & 1991 \end{aligned}$	$\begin{aligned} & \text { Oct- } \\ & \text { Nov } \\ & 1991 \end{aligned}$	$\begin{aligned} & \text { Apr- } \\ & \text { May } \\ & 1992 \end{aligned}$	$\begin{aligned} & \text { Oct- } \\ & \text { Nov } \\ & 1992 \end{aligned}$	$\begin{gathered} \text { Jan- } \\ \text { Feb } \\ 1993 \end{gathered}$	Apr- May 1993	$\begin{aligned} & \text { Jan- } \\ & \text { Feb } \\ & 1994 \end{aligned}$	Apr- May 1994	OctNov 1994	$\begin{aligned} & \text { Apr- } \\ & \text { June } \\ & 1995 \end{aligned}$
SOUTHERN REGION Cape hake Deep water hake	130 22	130 25	126 31	80 83	200 145	160 125	210 150	180 115	200 160	240 215	150 120	145 -140
CENTRAL REGION Cape hake Deep water hake	180 4	219 6	150	302 13	$\begin{array}{r} 261 \\ 15 \end{array}$	542 15	$\begin{array}{r} 280 \\ 12 \end{array}$	$\begin{array}{r} 280 \\ 20 \end{array}$	$\begin{array}{r} 225 \\ 30 \end{array}$	$\begin{array}{r} 160 \\ 30 \end{array}$	$\begin{array}{r} 110 \\ 15 \end{array}$	105 40
NORTHERN REGION Cape hake Deep water hake	180	105*	200	140	185 4	190 8	150 4	110	$\begin{aligned} & 92 \\ & 20 \end{aligned}$	$\begin{array}{r} 130 \\ 15 \end{array}$	$\begin{aligned} & 90 \\ & 10 \end{aligned}$	$\begin{array}{r} 120 \\ 25 \end{array}$
TOTAL NAMIBIA Cape hake Deep water hake Both	$\begin{array}{r} 490 \\ 25 \\ 516 \end{array}$	$\begin{array}{r} 450 \\ 35 \\ 485^{*} \end{array}$	$\begin{array}{r} 480 \\ 40 \\ 513 \end{array}$	$\begin{aligned} & 520 \\ & 100 \\ & 620 \end{aligned}$	$\begin{aligned} & 650 \\ & 160 \\ & 810 \end{aligned}$	$\begin{array}{r} 890 \\ 150 \\ 1040 \end{array}$	$\begin{aligned} & 640 \\ & 170 \\ & 810 \end{aligned}$	$\begin{aligned} & 570 \\ & 140 \\ & 710 \end{aligned}$	$\begin{aligned} & 520 \\ & 210 \\ & 737 \end{aligned}$	$\begin{aligned} & 530 \\ & 260 \\ & 790 \end{aligned}$	$\begin{aligned} & 350 \\ & 145 \\ & 495 \end{aligned}$	$\begin{aligned} & 370 \\ & 205 \\ & 575 \end{aligned}$
FISHABLE BIOMASS												
SOUTHERN REGION Cape hake Deep water hake				42 42	$\begin{aligned} & 145 \\ & 113 \end{aligned}$	75 80	$\begin{aligned} & 115 \\ & 123 \end{aligned}$	$\begin{aligned} & 94 \\ & 95 \end{aligned}$	112 114	$\begin{aligned} & 130 \\ & 164 \end{aligned}$	$\begin{aligned} & 35 \\ & 61 \end{aligned}$	62 66
CENTRAL REGION Cape hake Deep water hake				$\begin{array}{r} 140 \\ (13) \end{array}$	85 15	170 15	150	118 16	$\begin{aligned} & 50 \\ & 26 \end{aligned}$	$\begin{aligned} & 65 \\ & 22 \end{aligned}$	$\begin{aligned} & 58 \\ & 10 \end{aligned}$	54 34
NORTHERN REGION Cape hake Deep water hake				135	143	143	113	88	74 19	102 13	63 8	93 21
Cape hake Deep water hake	$\begin{array}{r} 200 \\ 20 \end{array}$	$\begin{array}{r} 270^{*} \\ 20^{*} \end{array}$	280 20	320 50	370 130	390 100	380 140	300 120	240 160	300 200	156 79	209 121
TOTAL FISHABLE	220	290*	300	370	503	490	520	420	400	500	235	330
NON-FISHABLE BIOMASS												
Cape hake	290	180	200	200	280	500	260	270	280	230	193	161
Deep water hake TOTAL	5	15	20	50	130	50	30	20	50	60	66	84
NON-FISHABLE	295	195	220	250	410	550	290	290	330	290	259	245

[^0]

Figure 13 Trends in biomass estimates: a) Cape hake, 'fishable stock', b) deep water hake, 'fishable stock', c) recruits ('non-fishable' biomass) and d) total hake in Namibia. Thousand tonnes.

Geographic shift in the fishable biomass

Figure 14 shows the development of the relative share of the fishable biomass of Cape hake in the regions for last five years. The figure demonstrates that the Northern Region during the last survey hold 44% of the fishable biomass of Cape hake while the Central Region has only 26%. The figure also show that the Central Region's share has decreased considerably since 1993.

Recruitment potential

The recruitment to the stock of Cape hake can be estimated from the numerical abundance of the 1.5-2 year old fish. November is usually the month when one for the first time through trawl
surveys can estimate the strength of the year-class born the previous year, as it has then settled on bottom during the previous months. The estimates for the 1993 year-class, based on the current survey data, are shown in Table 17 together with previous observations. A 'normal' recruitment level after two years seems to be around 2 billion fish ± 200 million (Table 17). The 1993 year-class is at present with 1.05 billion fish only half of the normal recruitment level. The 1992 year-class was

Figure 14 Relative regional share of fishable biomass of Cape hake 1991-95. estimated to 1.2 billion fish in May 1994, and is now reduced to 0.5 billion fish. Our data thus indicate two consecutive year classes with strength below normal. This indicates low recruitment to the fishery in the next two years.

At several locations, juvenile hake with modal lengths around 15 cm were caught in high abundance in the bottom trawl during the survey. At that stage in the life cycle the normal habitat is the pelagic zone which was not sampled during the survey. The relatively good catches at bottom could indicate rich presence of the 1994 year-class in the pelagic zone, but the size of the class can not be estimated before it settles on bottom towards the end of the year. The 1994 year-class will, even if it proves to be strong later in the year, does not recruit to the fishery before 2.5-3 years from now, that is in the 1998 fishing season.

Table $17 \begin{array}{cc}\text { Es } \\ & \text { two } \\ & 19\end{array}$	Estimates of strength of recent year classes of Cape hake. Cohort population numbers at about two years of age for the groups assumed to have been spawned in 1988, 1989, 1990, 1991 and 1992. Millions of fish.									
Year-class	1988	1989	1990	1991	1991	1991	1992	1992	1993	1993
Southern Region	980	100	300	990	670	390	250	2308	1730	510
Central Region	1320	170	1620	3500	1230	1370	1880	3017	490	430
Northern Region	10	10	240	440	270	130	70	5	190	0
Total	2310	280	2160	4930	2170	1890	2200	1235	2410	1020
Survey/Year	1/90	1/91	1/92	2/92	1/93	$2 / 93$	1/94	$2 / 94$	3/94	$1 / 95$

Annex I Size composition of main stocks

Cape hake
SOUTHERN REGION $260-700 \mathrm{~m}$

Cape hake SOUTHERN REGION TOTAL

Cape hake CENTRAL REGION $100-259 \mathrm{~m}$

Cape hake CENTRAL REGION $260-700 \mathrm{~m}$

Cape hake CENTRAL REGION TOTAL

Cape hake
NORTHERN REGION $100-259 \mathrm{~m}$

Cape hake NORTHERN REGION $260-700 \mathrm{~m}$

Cape hake
NORTHERN REGION TOTAL

Deep water hake SOUTHERN REGION TOTAL

Deep water hake NORTHERN REGION

Annex II The size composition of the hake stocks split into length cohorts through optimizing techniques

CAPE HAKE

NORTHERN REGION

CENTRAL REGION

SOUTHERN REGION

The length frequency distribution with the estimated cohorts.

The length frequency distribution with the resultant distribution explained by the estimated cohorts.

CENTRAL REGION

The length frequency distribution with the estimated cohorts.

The length frequency distribution with the resultant distribution explained by the estimated cohorts.

Annex III Records of fishing stations

spectes
Sufflogobius bibarbatus
Squilla sp.

Et=rumeus whiteheadi Merluccius capensis, female

Cotal

SPECIEs
Etrumeus whiteheadi
Galeorhinus galeus
Merluceius capensis
Merluccius capensis, femaie
Sepia australis
Thymites atun
Merluccius capensis, male
Squalus megalops
Chelidonichthys capensis
Lophius vomerinus
Congiopodus spinifer
Lepidopus caudatus
Chelidonichthys queketti
Coelorinchus fasciatus
Tocaropsis eblane
Sufflogobius bibarbatus
Paracalilionymus costatus
Total

CATCH/BOUR		12 Fr	SAMP
weight	numbers		
194.40	2628	34.48	
88.80	8	15.75	
66.16	2854	11.73	2900
54.90	215	9.74	2899
45.98	2512	8.15	
42.20	16	7.48	2901
27.72	270	4.92	2898
14.22	18	2.52	
10.90	36	1.93	
6.10	20	1.08	2902
3.88	28	0.69	
3.70	298	0.66	
2.88	36	0.51	
0.54	10	0.10	
0.54	45	0.10	
0.46	18	0.08	
0.46	18	0.08	
563.84		100.00	

spectes

trumeus whiteheadi
Merluccius capensis, female
Sepia austrais
Herluccius capensis, male
Thyrsites atun ylopteru
paracallionymus
Lophius vomerizus
Merluceius capensis
Holohalaelurus regani
Chelidonichtiys queketti
Chelidonichthys capens
Genypterus capensi
MYCTOPHIDAE
Sufflogobius bibarbatus
Lepidopus caudatus
cynoglossus capensis
rotal

CATCE/HOUR		\% of tot.	SAMP
weight	numbers		
481.50	6102		
18.90	192	3.27	2904
15.66	1566	2.71	
14.20	104	2.46	2903
9.36	486	2.62	
6.90	4	2.19	2905
5.94	576	2.03	
5.00	16	0.87	2907
4.50	150	0.78	2908
4.30	36	0.78	
3.60	54	0.62	
3.60	18	0.62	
2.76	14	0.30	2906
0.72	360	0.12	
0.72	90	0.12	
0.54	162	0.09	
0.36	270	0.06	
0.06	10	0.02	
577.82		99.98	

spectes
zeus faber
Epigonus denticulatus Merluccius paradoxus, female nerluccius paradoxus, female Coelorinchus fasciatus Kalacocephalus laevis Holohalaelurus regani Herluccius capensis, female Lophius vomerinus Helicolenus dactylopterus Brama brama Genypterus Todarodes sagittatus Todaropsis eblanae cynoglossus capensis
Total

CATCH/HOUR		\% of tat. C	SAMP
weight	numbers		
678.50	1104	45.94	
397.90	7292	26.94	
126.74	1128	日. 58	2929
112.00	966	7.58	2928
29.30	34	1.98	2925
28.60	276	1.94	
28.30	46	1.92	
16.34	70	1.11	
11.90	4	0.81	2923
11.00	6	0.74	2927
8.50	14	0.58	2924
6.68	24	0.45	
6.50	4	0.44	
5.00	4	0.34	2926
4.60	6	0.31	
3.22	24	0.22	
2.84	46	0.12	
1476.92		100.00	

SpEcies
sepia australis
Merluccius paradoxus, female
Merluceius capensis, female
Zeus capensis
Merlucius paradoxus
Merluccius paradoxus, male
Chelidonichthys gueketti
Trachurus capensis
Merluccius capensis, male
HoIohalaelurus regai
Lophius vomerinus
Etrumeus whiteheadi
Etmopterus brachyurus
Congiopodus spinifer
Todarodes sasittatus
Lepidops caudatus
Thynsites atun
Todarodes sagittatus
Paracalilionymus costatus
Total

CATCH/HOUR		- of tot.c	SAMP
weight	numbers		
156.00	25298	23.99	
136.50	1800	20.99	2935
93.30	60	14.35	2931
59.40	556	9.14	
38.56	2236	5.93	2936
29.86	496	4.59	2934
23.40	166	3.60	
17.86	76	2.75	2933
17.60	16	2.71	2930
16.20	46	2.49	
25.60	18	2.40	2937
14.70	196	2.26	
13.66	30	2.10	
4.20	60	0.65	
4.06	60	0.62	
2.70	46	0.42	
2.58	2	0.41	2932
2.58	2	0.40	
1.36	106	0.21	
650.22		100.01	

SPECIES	CATCH/HOUR		or tor. C	SAMP
	weight	numbe		
Emmelichthys mitidus	528.00	806	50.03	
Merluccius capensis, female	224.71	180	12.82	2943
Merluceius paradoxus	89.57	5040	8.49	2946
Merluccius capensis, male	71.06	129	6.73	2942
Chelidonichthys capensis	67.29	111	6.38	
Merluccius paradoxus, female	43.97	660	4.17	2945
Etrumeus whiteheadi	28.11	317	2.66	
Sepia australis	24.60	1637	2.33	
Squalus megalops	14.14	43	$\therefore .34$	
Trachurus eapensis	12.43	69	2.18	2938
chelidonichthys queketti	9.94	94	0.94	
merluceius paradoxus, male	9.77	163	0.93	2944
Lepidopus caudatus	7.54	197	0.71	
Cynoglossus eapensis	7.11	69	0.67	
zeus capensis	4.20	137	0.40	
Helicolenus dactylopterus	3.09	103	0.29	
Paracallionymus costatus	2.31	354	0.22	
Lephius vomerinus	2.06	9	0.20	2939
HoLohalaelurus regani	1.97	17	0.19	
Congiopodus spinifer	1.53	9	0.15	
Sardinops ocellatus	0.86	9	0.08	2941
Todaropsis eblanae	0.77	43	0.07	
Genypterus capensis	0.17	9	0.02	2940
Total	1055.30		100.00	

species
Merluccius capensis, female
Merluccius capensis, female
Merluccius capensis, male
Merluceius capensis
kaja pullopunctata
Callorhinchus capensis
Thyrsites atup
Holohalaelurus regani
Sepia australis
Lophius vomerinus
rachurus capensis
Coelorinchus fas fasciatus
zeus capensis
Total

CATCH/HOUR		8 Of TOT. C	SAMP
weight	numbers		
47.90	378	34.01	2949
30.70	320	21.79	2948
15.30	674	10.86	2947
13.80	2	9.80	
12.90	24	9.16	2950
8.82	4	6.26	
4.70	2	3.34	
3.42	16	2.43	
1.28	58	0.91	
0.80	2	0.57	
0.40	2	0.28	
0.32		0.23	
0.30	6	0.21	
0.14	4	0.10	
0.08	2	0.06	
140.86		100.01	

spectes

Herluccius capentis, male Merluccius capensis, female Genypterus capensis
Herluccius capensis
zeus faber
allorhinchus capensis
Helicolenus dactylopterue
angiopodus spinifer
sepia australis
rotal

Sorted: 142 Kg Total caten 56382 CATCH/HOUR: 1137.64

Merluccius paradoxus, female
Merluccius capensis, female
Merluccius capensis, femal
epia australis
erluccius capensis, male
merluccius gapensis
Merluccius paradoxus, male
Merluccius capensis
MYCTOFHIDAE
Sufflogobius bibarbatus
Chelidonichthys capensis
odarodes sagittatus
Trachurur capensis
Todaropsis eblanae
Lepidopus caudatus
Holohalaelwrus regani.
Genypterus capensis
zeus capensis
Total

CATCH/HOUR		* or tot. C SAMP	
weratt	numbers		
33830	5270	29.74	2960
19244	2210	16.92	2958
1 So 60	142	13.77	2956
:4. 22	7584	12.94	
$13^{\prime \prime} 36$	1122	12.07	2957
4140	2	3.64	
2450	28	2.15	2955
2414	340	2.12	2959
2346	986	2.06	2961
1632	97920	1.43	
918	4828	0.81	
816	34	0.72	
4.78	6	0.42	
340	34	0.30	2964
2.10	4	0.18	2963
2.04	68	0.18	
2.04	34	0.18	
1.70	34	0.15	
1.48	12	0.13	2962
1.02	68	0.09	
1137.64		100.00	

spectes
Merluccius capensis, female Merluccius paradoxus, femal Etmopterus brachyurus Zeus capensis
Chelidonichthys capensis Lepiciopus caudatus Merluccius paradoxus, male Thyrsites atur
Mustelus palumbes
Sepia australis
Merluccius paradoxus
Holohalaelurus regani
Congiopodus spini.
Trachurus capensis
Cheliconichthys queketti
Todaropsis eblanae
Todarodes sagittatus
Genypterus capensis
Helicolenus dactylopterus
Total

Catch/botr		2 OF тот. $=$	SAMP
weigtt	numbers		
99.70	72	29.95	2970
46.24	624	13.89	2973
${ }^{23.84}$	56	7.16	
23.76	192	7.14	
20.80	56	6.25	
19.84	280	5.96	
19.76	312	5.94	2972
16.00	14	4.81	2969
13.70	10	4.12	2965
13.42	8	4.03	
7.76	1096	2.33	
6.64	424	1.99	2971
6.32	24	1.90	
2.96	16	0.89	
2.34	4	0,70	2969
2.32	16	0.70	2966
2.24	16	0.67	
2.08	32	0.62	
1.54	2	0.46	
1.16	4	0.35	2967
0.24	56	0.07	
0.16	56	0.05	
332.82		99.98	

SPEEIES
Squalus megalops
Zeas capensis
Merluceius capensis, female
Eamelichthys nitidus
Lepidopus caudatus
Callorhinchus capensis
Chelidonichthys queketti
Chelidonichthys capensis
Melluecius capensis, male
Trachurus capensis
Lophius vomerinus
Thysites atun
Congiopodus spinifer
Polyprion americaus *
Seia australis
Holohalaelurus regani
Etrumeus whiteheadi
Total

CATCH/HOUR			
Weight	numbers	OF TOT. C	SAMP
654.16	1618	46.94	
195.30	988	24.01	
110.00	52	7.89	2977
104.38	4242	7.49	
87.16	106	6.25	
45.16	42	3.24	
43.06	588	3.09	
40.74	64	2.92	
39.80	22	2.86	2976
24.78	148	1.78	2974
17.90	14	1.28	2975
8.82	22	0.63	2978
8.62	42	0.62	
6.40	2	0.46	
4.42	316	0.32	
1.48	22	0.11	
1.48	22	0.11	
1393.66		100.00	

SPDCIES	CATCH/HOJR weight numbers		1 of tot.c	SAMP
Merluccius paradoxus, female	246.20	520	40.61	2980
Merluccius paradoxus, male	240.80	570	39.72	2979
Coelorinchus fasciatus	47.50	832	7.83	
Genypterus capensis	23.00	14	3.79	2981
Helicolenus dactylopterus	18.10	82	2.99	
octopus vulgaris	10.70	2	2.76	
Raja pullopuctata	7.40	2	1.22	
Todarodes sagittatus	3.75	10	0.61	
Holchalaelurus regani	3.10	10	0.51	
Raja confundens	2.70	2	0.45	
myctophidae	1.40	108	0.23	
Notacanthus sexspinis	0.48	4	0.08	
Malacocephalus laevis	0.30	16	0.05	
etmopterus pusillus	0.24	4	0.04	
Chelidonichthys queketti	0.24	6	0.04	
Emelichthys nitidus	0.12	4	0.02	
zeus capensis	0.12	4	0.02	
Nezumia sp.	0.12	12	0.02	
Paracallionymus costatus	0.04	4	0.01	
total	606.26		100.00	

SPECIES
Merluceius paradoxus, female
Deepwater fish mixture
Nezumia leonis
Todarodes sagittatus
Hydrolagus sp.
Raja confusdens
Genypterus capensis
Etmopterus pusillus
Merluecius paradoxus, male
Coelorinchus fasciatus
Cruriraja parcomaculata
Selachophidium guentheri
Notacanthus sexspinis
Photichthys argenteus
Plesionika martia
MycrophidaE
Epigonus denticulatus
Scopelosaurus meadi
Yarrella blackfordi
Total

CATCH/HOUR weight numbers		1 of tot. c	SAMP
120.00	98	51.24	2989
19.60		10.00	
16.90	702	8.63	
7.54	16	3.85	
5.22	6	2.56	
5.00	2	2.55	
4.26	4	2.17	2991
4.06	238	2.07	
4.00	8	2.04	2990
3.66	42	1.87	
3.39	2	1.73	
0.54	4	0.28	
0.46	14	0.23	
0.44	28	0.22	
0.38	48	0.19	
0.20	16	0.10	
0.12	2	0.06	
c. 10	2	0.05	
0.08	2	0.04	
295.94		99.98	

SPECIEs
Merluccius paradoxus, female
Trachurus capensis
Merluecius paradoxus, male
Chelidonichthys capensis
Meriuccius capensis, female
Sepia australis
Merluccius capensis, male
Coelorinchus fasciatus
Todarodes sagittatus
Mrcrophidas
Lophus vomerinus
Thyrsites atun
Merluecius paradoxus, female
Genypterus capensis
Total

CATCH/ROUR		Q OF TOT. C	SAMP
weight	numbers		
1618.50	24492	51.34	2995
994.50	3822	31.54	2999
265.98	3978	8.44	2994
81.90	156	2.60	
69.96	122	2.22	2993
39.00	1794	1.24	
24.18	52	0.77	2992
21.84	1872	0.69	
10.02	22	0.32	
9.36	5070	0.30	
7.60	8	0.24	2996
4.70	2	0.15	2998
3.50	6	0.13	3000
1.68	10	0.05	2997
3252.72		200.02	

DATE: $25 / 4 / 95$	PROJECT STATION: 940							
		gear type:	gT No:6	POSI	Ition: Lat	s		2742
	stop duration				Long	E		2501
TIME :14:15:00 14:45:00 30 (min) Purpose code:								
LOG : 113.50 135.00 1.50 Area code								
FDEFTH: 171278 gearcond.code:								
\#DEFTH: 171								
mowing dir: 2370 wire out: 600 mm speed: 30 kn 10								
Sorted: 36 kg		tai catch:	140.28	catc	CH/HOOR:		80.	. 56

CATCH/HOUR weight oumbers		Of rom. c	SAMP
105.60	1034	37.64	3001
40.82	110	14.55	
35.54	572	12.67	3004
33.00	320	11.76	3002
12.22	56	4.36	3007
10.34	528	3.69	
10.20	50	3.64	3005
9.90	6	3.53	
7.82	408	2.79	3008
4.08	1134	1.45	
3.68	2	1.31	
2.42	144	0.85	3003
1.72	8	0.61	3006
1.56	2	0.55	
0.88	452	0.31	
0.78	22	0.28	
280.56		100.01	

species	CATCH/BOUR		3 OF tot. C	SAMP
	weight	numbers		
Merluccius capensis, female	186.50	1530	52.82	3011
Merluccius capensis, male	138.00	1450	39.08	3010
merluccius eapensis	25.20	1230	7.14	3009
Sufflogobius bibarbatus	3.40	1310	0.96	
Total	353.10		100.00	

SPECIES
CATCH/HOUR : OF TOT. C SAMP
Merluccius capensis, male
Merluceius capensis, female Sufflogobius bibarbacus Raja sp.
MYCTOPHIDAE
merluceius capensis
genypterus capensis
Chelidonichthys capensis
Total

CATCH/HOUR		OF TOT. C	SAMP
weight	numbers		
596.37	6510	43.14	3015
365.04	2907	26.11	3016
165.00	31131	21.94	
121.20	3	8.77	
58.20	48501	4.21	
28.20	1071	2.04	3014
27.15	120	1.95	3012
19.29	48	1.40	
1.86	12	0.13	3013
		100.00	

species
aycrophidae
rerluccius capensis, female
erluccin paradoxus, femal
total

CATCH/HOUR \% OF TOT. C SAMP			
weight			
16.00		78.13	
2.52	2	12.30	3017
1.40	16	6.84	3019
0.56	6	2.73	3018
20.48		00.00	

Merluccius paradoxus, female Merluccius capensis, female Merluccius capensis, male Merluccius paradoxus, male Deepwater fish mixture coelorinchus fasciatus Helicolenus dactylopterus Genypterus capensis Lophius vomeritus
Epigonus denticulatus
Malacocephalus laevis Galeus polli chiorophthalmus punctatus rotal

CATCH/HOLR			OF TOT. C
weight	SAMP		
161.78	834	35.50	3021
141.94	284	31.15	3023
46.18	102	10.13	3022
46.18	294	10.13	3020
28.62		6.28	
8.22	334	5.80	
6.40	90	1.40	
4.88	10	1.07	3025
4.58	12	1.01	
2.68	6	0.59	3024
1.76	118	0.39	
1.48	6	0.32	
0.90	6	0.20	
0.12	6	0.03	
$\mathbf{4 5 5 . 7 2}$		100.00	

DATE: 26	6/ 4/95	PROJECT STATYON: 945							
			gear type:	BT No:6	POSI	ITION: Lat	s	2733	
	TIME : $02: 50: 00$ start $03: 20: 00$ duration 30 (min) purpose code: 3 Long E 2428								
LOG : 1192.901194 .50 1.60 Area code									
FOEPTH: 450445 GearCond.code:									
BDEPTH: 450 ¢45 Validity code:									
Towing dir: 340° wire out: 1300 m speed: $30 \mathrm{kn*10}$									
sorted	d: 72 K		tal catch:	138.24	catc	$\mathrm{CH} / \mathrm{HOCR}$:		6.48	

species

Trachyrincus scabrus
Total

CATCH/HOUR			
weight	numbers	OF TOT. C	SAMP
62.30	84	22.53	3027
49.00	672	27.72	
28.70	1436	10.39	
24.50		8.85	
15.76	140	5.70	
14.08	14	5.09	
13.16	70	4.75	
13.16	8	4.75	
11.34	22	4.10	
11.20	2	4.05	3028
10.60	16	3.83	3026
10.22	148	3.70	
6.70	4	2.42	3029
3.64	280	1.32	
0.70	14	0.25	
0.64	8	0.23	
0.64	8	0.23	
0.14	22	0.05	
276.48		99.98	

Sorted: 88 kg Total catch: 105.46 CATCH/HOUR: 210.92

Merluccius paradoxus, f enale
Merluccius paradoxus, male
coelorinchus fasciat
Raja confundens
eania profundorum
Galeus polij
Nezumia sp.
Hydzolagus sp.
Selachophidium guentheri
coelorinchus braueri
Todarodes sagittatus
metophidae
photichthys argenteus
Helicolenus dactylopterus
Malacocephalus laevis
Ebinania costaecanarie
sotal

CATCH/HOUR			OF TOT. C	SAMP
weight	numbers			
148.30	166	70.31	3031	
22.00	30	10.43	3030	
5.94	60	2.82		
5.82	2	2.76	3032	
5.22	4	2.47		
5.18	2	2.46		
3.02	28	1.43		
3.00	126	1.42		
2.68	4	1.27		
2.56	40	1.21		
1.50	58	0.71		
1.34	2	0.64		
1.04	130	0.49		
1.40	2	0.47		
0.96	80	0.46		
0.80	8	0.38		
0.44	2	0.21		
0.12	2	0.06		
210.92		100.00		

species
Merluccius paradoxus, female
beania calcea
ajarodes sagitt
Sliachophidium guenthe
coelorinchus braueri
etmopterus lucifer
Trachyscorpia capensis
vezumia sp.
Galeus folli
Gerluccius paradoxus
Merluccius paradoxus, male
Neoscopelus macrolepidotus
photichthys argenteus
Todaropsis eblanae
MXCTOPHIDAE
Yarrella blackfordi
Solenocera africana
Notacanthus sexspinis
Total

CATCH/HODR		OF TOT. C	SAMP
Weight	numbers		
396.60	322	70.28	3034
102.16	72	18.10	
27.64	64	4.90	
8.92	54	1.58	
4.78	64	0.95	
4.60	172	0.82	
3.52	28	0.52	
3.42	18	0.51	
2.98	144	0.53	
2.26	28	0.40	
2.16	18	0.38	
1.65	2	0.29	3033
0.90	64	0.16	
0.90	64	0.16	
0.72	10	0.13	
0.36	28	0.06	
0.28	10	0.05	
0.28	36	0.05	
0.18	10	0.63	
564.32		100.00	

Spectes	CATCH/HOUR		* OF tat. C	SAMP
	weight	numbers		
Meriuccius paradoxus, female	572.00	1368	51.32	3038
Merluccius paradoxus, male	232.00	578	20.82	3037
Coelorinchus fasciatus	168.36	1984	25.11	
Genypterus capensis	34.30	16	3.08	3035
rodarodes sagittatus	31.32	58	2.81	
Raja confundens	18.08	14	1.62	
Galeus polli	15.80	146	1.42	
Krill	13.20		1.18	
Helicolenus dactylopterus	7.40	36	0.66	
Lophius vomerinus	7.00	4	0.63	3035
MYCTOPHIDAE	5.12		0.46	
Photichthys argenteus	3.60	270	0.32	
Selachophidium guentheri	2.06	30	0.18	
Beryx splendens	0.96	日	0.09	
Myxine capensis	0.88	-	0.08	
Nezumia sp.	0.58	30	0.05	
Coelorinchus fasciatus	0.52	30	0.05	
Epigonus denticulatus	0.52	22	0.05	
Malacocephalus laevis	0.44	14	0.04	
macrouridae	0.36	14	0.03	
Total	1114.50		100,00	

SPECIEs
Merluccius capensis, female
Merluccius capensis, male
Deepwatex fish mixture
Merluccius paradoxus, female
Todarodes sagittatus
Coelorinchu fasciatus
Merluccius paradoxus, male
Lophius vomerinus
Genypterus capensis
Helicolenus dactylopterus
CEA is
Total

CATCH/HOUR		Of TOT. C	SAMP
weight	numbers		
105日. 40	2028	51.00	3042
521.52	1234	25.13	3041
165.00		7.95	
151.92	660	7.32	3040
51.84	96	2.50	
50.82	1440	2.45	
26.34	126	1.27	3039
26.10	18	1.26	3044
19.14	24	0.92	3043
2.40	12	0.12	
1.68	30	0.08	
2075.16		100.00	

DATE: 27	/ 4/95	GEAR TYPE: BT No: 6 duration			Prosect station: 952			
					Position:lat		S	26321456
	start							
TIME : 0	:09:40:00	09:42:00	2 (min)	Purpose code: 3				
Log : 1	: 1320.80	1320.90	0.10	Area code : 2				
FDEPTH:	- 110	110		gearcond.code: 8				
BDEPTH:	110	110		validity	ode:	9		
Towing cir: 130^{*} wire out: 350 m Speed: $30 \mathrm{kn} \times 10$								
Sozted	d: 30 K		tal catch:	30.00	CRTC	CH/HOUR:		0.00

DATE: $27 / 4 / 95$			Protect station: 954				
			GEAR tYpe: bT No:8 PO		Ition:Lat	s	2656
start		stop	duration		Long	E	1359
TIME :	:22:09:00	22:39:00	30 (min)	Purpose code:	3		
LOG :	:1391.50	1393.10	1.60	Area code	1		
FDEPTH:	: 421	421		Gearcond.code:			
BDEPTH:	: 4^{421} \% ${ }^{421}$		Wire out:1300 m speed: $28 \mathrm{kn*10}$				
Sorte	ed: Kg		tal eatch:	255.88 CAT	CH/HOUR:		1.76

spectes
Merluccius paradoxus, female
Merluccius paradoxus, male
Coelorinchus fasciatus
Helicolenus dactylopterus
Todarodes sagittatus
Genypterus capensis
Raja leopardus
Selachophidium guentheri
Nezumia sp.
Galeus polii
total

CAICH/HOUR		3 OF TOT.	SAMP
weight	numbers		
328.70	1420	64.23	3059
98.70	360	19.29	3058
37.10	334	7.25	
27.90	106	5.45	
12.60	24	2.46	
2.78	2	0.54	3060
2.66	2	0.52	
1.00	16	0.20	
0.20	4	0.04	
0.12	2	0.02	
511.76		100.00	

SPECIES	CATCH/HOUR		OF TOT. C	SAMP
	weight	numbers		
Merluccius paradoxus, female	909.90	6542	49.47	3068
Merluccius paradoxus, male	243.00	1674	13.21	3067
Merluccius capensis, female	208.00	96	11.31	3066
Coelorinchus fasciatus	144.90	2628	7.88	
Todaroces sagittatus	115.38	192	6.27	
Helicolenus dactylopterus	101.70	882	5.53	
Genypterus capensis	54.60	28	2.97	3069
Lophius vomerinus	35.20	16	1.91	3070
Nezumia sp.	12.42	396	0.68	
Bathynectes piperitus	9.72	216	0.53	
Merluccius capensis, male	1.96	2	0.11	3065
Epigonus denticulatus	1.08	54	0.06	
Galeus polli	1.08	18	0.06	
Lamprogramus exutus	0.36	18	0.02	
Total		1839.30		100.01

specties
Merluccius capensis, male
Merluccius capensis, female
Merluccius capensis
Todarodes sagittatus
Sufflogobius bibarbatus
Coelorinchus fasciatus
Squilla sp.
Total

CATCH/HOUR		OF TOT. ${ }^{\text {c }}$	SAMP
weight	numbers		
224.70	1470		3071
173.60	966	41.86	3073
8.68	420	2.09	3072
3.64	14	0.88	
2.66	154	0.64	
0.70	42	0.17	
0.70	28	0.17	
414.68		100.00	

DATE:28/	/4/95		GEAR TYPE: BT No: 8 duration		PROJECT STATION: 959					
				ITION:Lat	5	2611				
	start	stop				Long	E	1441		
TIME : 2	21:05:00	21:06:00			1 (min)	Purpose	e:	3		
IOG : 1	1511.80	1511.90	0.10	Area code		1				
FDEPTH:	169	169		Gearcond.	de:	9				
BDEPTH:	169	169		Validity	de:	9				
	Towing di	350°	wire out:	50 ml spee		$\mathrm{kn} * 10$				
Sorted	d: 6 Kg		tal catch:	60.00		CH/HOUR:		0.00		

species
meriuccius capensis
rotal

SPECIES
NO CATCH
rotal

CATCH/HOUR OF TOT. C SAMP weight numbers
\qquad

spectes

Deepwater fish mixture	weight 931.00	numbers	34.68	
Merluccius capensis, female	778.76	3606	29.01	3080
Merluccius capensis, male	465.50	2556	17.34	3079
Todarodes sagittatus	215.96	420	8.04	
Merluccius capensis, female	109.10	70	4.06	3076
Trachurus capensis	49.36	140	1.84	3077
Lophius vomerinus	35.20	52	1.31	3081
Galeus polli	27.66	596	1.03	
Schedophilus huttoni	19.60	36	0.73	
Coelorinchus fasciatus	14.36	420	0.53	
Sufflogobius bibarbatus	14.00	1086	0.52	
Squilla sp.	10.86	420	0.40	
Merluccius capensis, male	7.50	8	0.28	3075
Merluccius capensis	5.60	316	0.21	3078
Total	2684.46		99.98	

species	САТСН/HOUR		\% OF tot. C	SAMP
Merluccius eapensis	1238.89	5987	70.76	3085
Krill	248.62		14.20	
Merluccius capensis	115.11	62	6.57	3084
Coelorinchus fasciatus	85.42	1136	4.88	
Lophius vomerinus	39.78	22	2.27	3083
Galeus polli	5.42	111	0.31	
Todarodes sagittatus	4.22	4	0.24	
Trachurus capensis	3.89	13	0.22	
Squilla acuelata calmani	3.89	196	0.22	
Austroglossus microlepis	3.67	11	0.21	3082
sufflogobius bibarbatus	1.96	98	0.11	
Total	1750.87		99.99	

Total

Sorted: 183 kg To	499.5	CATCH	H/HOUR:	999.20
species	Catch	Hock	- OF TCT. C	SAMP
	weight	numbers		
Merluccius paradoxus, female	743.18	656	74.38	3104
Nezumia sp.	86.14	1552	8.62	
Raja confundens	36.54	74	3.66	
Todarodes sagittatus	29.74	102	2.98	
Selactophidium guentheri	26.00	464	2.60	
Lophius vomerinus	19.20	4	1.92	3105
Merluccius paradoxus, male	15.58	18	1.56	3103
SHRIMPS	12.12	2556	1.21	
Helicolenus dactylopterus	7.48	52	0.75	
Epigonus denticulatus	5.56	62	0.56	
MYCTOPHIDAE	4.88	278	0.49	
Trachyrincus scabrus	3.86	18	0.39	
Yarrella blackforai	2.38	108	0.24	
Notacanthus sexspinis	2.20	34	0.22	
Raja doutrei	1.76	6	0.18	
Ebinania costaecanarie	1.52	6	0.15	
Hoplostethus cadenati	0.56	238	0.06	
Neocyttus Ihomboidalis	0.50	6	0.05	
Total	999.20		100.02	

Sorted: 179 Kg Total catch: 295.72 CATCH/HOUR: 709.73
species
Meriuccius paradoxus, female
Raja confundens
coelorinchus fasciatus
Helicolenus dactylopterus
Lophius vomerinus
Todarodes sagittatus, male
Nezumia sp.
Geaypterus
Galeus polli
Galeus polli
Deepwater fish mixture
Notacanthus sexspinis
Ebinamia costaecanarie
SHRIKPS
Selachophidium gu
Myxine capensis
Lithodes Eerox
myctophidas
Nephropsis athantica
Total

CATCH/HOUR		2 Of tot. c	SALP
weight	numbers		
293.88	384	41.41	3107
196.56	94	27.70	
53.35	406	7.52	
36.98	156	5.21	
25.20	7	3.55	3109
24.24	45	3.42	3106
19.56	45	2.76	
18.41	391	2.59	
14.16	5	2.00	3108
6.55	235	0.92	
5.62		0.79	
3.60	142	0.51	
3.29	27	0.46	
2.18	48	0.31	
1.56	374	0.22	
1.56	94	0.22	
1.10	17	0.15	
0.98	2	0.14	
0.62	48	0.09	
0.31	48	0.04	
709.71		100.01	

Spectes
Krill
MYCFophidas
Merluccius capensis, femaie
Merluceius capensis, male
Colorinchus fasciatus
Helicolenus dactylopterus
Todarodes sagitatus
Lophius voperiaus
Serluccius capensis
Total

CATCH/HOOR		OF TOT. C	SAMP
weight	numbers		
840.00		28.94	
792.00		27.29	
493.20	2136	16.99	3119
326.40	1848	11.25	3120
186.00	240	6.41	
163.20	900	5.62	
69.12	132	2.38	
25.92	24	0.89	3122
6.60	300	0.23	3121
		100.00	

CATCH/HOUR		OF TOT. C	SAMP
weight	numbers		
660.00		28.41	
618.00	1240	26.60	3125
320.00	1620	13.77	3124
276.00		11.88	
189.00	2460	8.14	
57.00	200	2.45	
47.40	20	2.04	3126
45.60	100	1.96	
43.80	1860	1.89	3122
37.80	300	1.63	
18.00	360	0.77	
6.40	20	0.28	3123
4.20	60	0.18	
2323.20			

PROJECT STATION: 973

PROJECT STATION: 974
DATE: $2 / 5 / 95 \quad$ GEAR TYPE: BT No: 8 PROJECT STATION: 974
 E E 1339
cond. code:
alidity code:
Sorted: 198 Kg Totai catch: 773.97 CATCH/HOJR: 3572.17

spectes

Merluccius paradoxus, female Merluceius paradoxus, male merluccius capensis, femiale
Merluccius paradoxis, Merluccius paradoxus, fema Helicolenus dactylopterus Lophius vomerinus Merinccius capensis, female Genypterus capensis Merluccius capensis, male Nezumia sp.
Notacanthus sexspinis Coclorinchus fasciatus Todarodes sagittatus selachophidium guentheri Hoplostethus

CAMCH/HOOR OF TOT.C SAMP

weight	numbers		
2207.68	6692	61.80	3137
509.63	1537	14.27	3136
248.31	92	6.95	3135
143.31	88	4.01	3139
80.77	577	2.26	
77.08	18	2.16	3140
73.06	78	2.05	3138
42.23	14	1.18	3141
40.85	18	1.14	3134
38.86		1.09	
30.37	577	0.85	
26.17	729	0.73	
18.09	78	0.51	
15.37	37	0.43	
8.86	577	0.25	
5.77	1191	0.16	
5.77	78	0.16	
3572.18		200.00	

SPECTES
Hopiostethus cadensti
Merluccius paradoxus, female
Nezumia sp.
Trachyriscus scabris
radarodes sagittatus
Selachophidium guentheri
Merluccius paradoxus, male
Helicolenus dactylopterus
MYCTOPHIDAE
Deepwater fish mixture
Epigonus denticulatus
Gakeus polli
SHRIMPS
gonostomatidae
Yarsella blackfordi

CATCH/HOUR		2 of tot. c	SAMP
2494.00	58680	58.09	
429.60	630	16.70	3143
208.08	72	8.09	
124.56	3240	4.84	
95.76	360	3.72	
73.44	144	2.86	
46.80	792	1.82	
31.20	65	1.21	3142
28.08	432	1.09	
10.80	936	0.42	
9.36		0.36	
9.36	72	0.36	
5.04	72	0.20	
3.60	792	0.14	
1.44	216	0.06	
0.72	72	0.03	
2571.84		99.99	

 Sorted: 441 Kg Notal catch: 91日.10 CATCH/HOUR: 1836.20
spactiss
Herluccius paradoxus, female
Deania calcea
Hoplostethus cadenati
Todarodes sagiteatus
Mezumia sp.
Neohariotta pinnata
Merluccius paradoxus, male
Selachophidium guentheri
Merlucius capensis, female
Lophius vomerinus
Raja confundens
Notacanthus sexspinis
Total

CATCH/HODR			
weight	numbers	OF TOT. C	SAMP
647.40	634	35.26	3147
423.20	276	23.05	
372.60	13418	20.29	
161.50	238	8.80	
106.26	1978	5.79	
74.52	46	4.06	
14.00	20	0.76	3146
9.66	138	0.53	
9.34	2	0.45	3145
7.54	2	0.41	3144
7.50	46	0.41	
3.68	138	0.20	
1835.20		100.01	

CATCH/HOUR		a or mot. C	SAMP
652.20	678	49.12	3149
305.10		22.98	
133.38	54	10.05	
105.57	216	7.95	
31.86	27	2.40	
24.03	1053	1.81	
17.55	24	1.32	3148
14.85	783	1.12	
14.31	27	2.08	
11.07	135	0.83	
8.91	27	0.67	
7.29	27	0.55	
0.81	81	0.06	
0.54	27	0.04	
0.27	27	0.02	
1327.74		100.00	

SPECIES
Merluccius paradoxus, femaie
Trachyrimcus scabrus
Nezumia sp.
Merluccius paradoxus, male
Deepuater fish mixture
Todarodes sagittatus
Helicolenus dactylopterus
Lophius vomerinus
Deania profundorua
Coelorinchus fasciatus
Notacanthus sexspinis
Epigonus denticulatus
Hoplostethus cadenati
GoNosToMArIDAE
Selachophidium guentheri
total

CATCH/HOUK		- of mot. c	SAMP
weight	numbers		
380.50	482	67.07	3196
75.00	386	13.22	
45.00	170	7.93	
18.70	28	3.30	3195
15.10		2.66	
14.54	26	2.56	
5.36	46	0.94	
4.44	2	0.78	3197
2.76	5	0.49	
2.40	20	0.42	
1.40	40	0.25	
1.40	20	0.25	
0.30	20	0.05	
0.20	16	0.04	
0.20	10	0.04	
567.30		100.00	

Sorted: 451 kg Total catch: 530.58 CATCH/HOLR: 1447.04

spectes
Merluccius capensis, female
Merluccius paradoxus, female
Helicolenus dactylopterus
Merluccius capensis, male
Lophius vomerinus
Coelorinchus fasciat
Krill
MYCTOPHIDAE
Genypterus capensis
Todarodes sagittatus
Merluecius paradoxus, male
Nezumia sp.
Merluccius capensic, female
Trachipterus trachypterus
SHRIMPS
Galeus poili
Epigonus denticulatus
rotal

CATCH/HOUR			OF TOT. C
weight	numbers	SAMP	
775.36	616	53.58	3217
193.09	638	13.34	3219
181.09	3374	12.51	
106.36	136	7.35	3215
39.27	25	2.71	3213
28.25	556	1.95	
21.82		1.51	
20.73	3818	1.43	
18.41	11	1.27	3214
17.02	44	1.18	
14.45	57	1.00	3218
13.20	524	0.91	
6.19	16	0.43	3216
5.45	3	0.38	
3.93	1200	0.27	
1.96	87	0.14	
0.44	11	0.03	
1447.02		99.99	

CATCH/HOUR			OF TOT. C
Weight	numbers	SAMP	
137.25	5993	47.71	3237
84.45	960	29.35	3236
64.05	1185	22.26	3235
1.13	248	0.39	
0.53	218	0.18	3238
0.30	83	0.10	
287.71			

SPECIEs
Merluccius capensis, female
Merlucius capensis, male
Merluceius capensis, female
Traehurus capensis
Coelorinchus fasciatus
Merluccius capensis
Sufflogobius bibarbatus
Chelidonichthys capensis
Todarodes sagittatus
Genypterus capensis
Squilla sp.
Total

CATCH/HOUR		OF TOT. C	SAMP
weight	numbers		
245.60	1782	45.50	3249
193.60	1840	35.87	3248
37.20	26	6.89	3247
19.06	110	3.53	3251
18.70	404	3.46	
13.06	954	2.42	3250
5.58	580	1.03	
3.92	8	0.73	
2.32	8	0.43	
0.46	2	0.09	3246
0.28	8	0.05	
539.78		100.00	

DATE: 5	5/5/95	Project station: 998						
			GEAR TXPE:	BT No: 8	POS	Ition:Lat	s	2358
	start	stop	duration			Iong	E	1324
TIME :	:17:34:00	18:04:00	30 (min)	Purpose	de:	3		
LOG :	:2262.30	2263.80	1.50	Area code	:	2		
FDEPTH:	: 282	282		Gearcond.	ode:			
GDEPTH:	- 282	282		Validity	ode:			
	Towing di	ir: 340*	Wire out: 90	0 m Spee	: 30	kn*10		
Sorte	ed: 73 kg		tal eatch:	178.58	catc	CH/HOUR:		7.16

Species	CATCH/HOUR		\% Of tor. C	SAMP
	weight	numbers		
Trachurus capensis	257.00	850	71.96	3254
Merluceius capensis, female	62.90	196	17.61	3253
Merluccius capensis, male	29.00	144	8.12	3252
Chlorophthalmus atlanticus	4.10	240	1.15	
Todarodes sagittatus	3.00	10	0.84	
Austroglossus microlepis	0.66	2	0.18	3255
MYCTOPHIDAE	0.50	270	0.14	
rotal	357.16		100.00	

rotal

DATE:	6/ $\begin{gathered}\text { 5/95 } \\ \text { start }\end{gathered}$	stop	GEAR TYPE: BT No: 8 duration			PROTECT STATION: 1000			
						POS	ItION:Lat	s	2358
							Long	E	1311
TIME	:00:30:00	01:00=00	30	(min)	Purpose ca	e:	3		
LOG	:2290.80	2292.20	1.40		Area code		2		
FDEPTH	: 506	506			Gearcond.	ode:			
BDEPTH	: 506	506			Validity	de:			
	Towing di	: 170	Wire	ut:150	0 m Spee		kn*10		

CATCH/HOUR		Q OF TOT. C	SAMP	
weight	numbers			
220.00	9540	30.71		
136.00	520	18.98		
219.44	144	16.67	3263	
65.00	3880	9.07		
52.80	3040	7.37		
22.60	40	3.15		
22.00	80	3.07		
14.20	20	1.98		
12.80	20	1.79		
8.00	240	1.12		
7.80	180	1.09		
7.20	760	1.00		
5.98	8	0.83	3262	
5.28	2	0.74	3264	
5.00	40	0.70		
3.00	760	0.42		
2.60		0.36		
2.40	280	0.33		
2.20	40	0.32		
1.40	60	0.20		
0.40	80	0.06		
0.20	20	0.03		
0.20	20	0.03		
716.50		100.01		

Spectes	CATCH/HOUR		8 Of TOT. C	SAMP
Hoplostethus cadenati	340.00	11800	40.78	
Merluccius paradoxus, female	181.30	214	21.75	3266
Yarrella blackfordi	123.00	8880	14.75	
Nezumia sp.	53.60	2440	6.43	
Deania calcea	36.80	20	4.41	
Todarodes sagittatus	35.20	80	4.22	
Deania profundorum	12.20	20	1.46	
Deepwater fish mixture	8.60	660	1.03	
Merluccius paradoxus, male	6.08	-	0.73	3265
Selachophidium guentheri	5.80	100	0.70	
Lamprogramaus exutus	5.40	160	0.65	
SHRIMPS	5.00	1640	0.60	
Coelorinchus coelorhinc. polli	4.40	20	0.53	
STOMIIDAE	3.60	540	0.43	
Lophius vomerinus	2.64	4	0.32	3267
Coelorinchus fasciatus	2.40	20	0.29	
Notacanthus sexspinis	2.20	40	0.26	
myCTOPRIDAE	1.20	180	0.14	
Neoscopelus macrolepidotus	1.00	100	0.12	
MXCTOPHIDAE	0.80	100	0.10	
Beryx splendens	0.68	2	0.08	
Yarrella blackfordi	0.60	40	0.07	
CONGRIDAE	0.60	20	0.07	
Alepocephalus sp.	0.40	40	0.05	
Stereomastis sp.	0.20	20	0.02	
Total	833.70		99.99	

Sorted: kg Total cateh: 324.16 САтсн/ноия
648: 32

CATCA/HODR		OF TOT. C	SAMP
weight	rumbers		
204.60	748	31.56	
102.30	748	15.78	
99.70	102	15.38	3269
60.28	32890	9.30	
60.06	2002	9.26	
29.48	88	4.55	
26.84	44	4.14	
18.70	1430	2.88	
12.76	1826	1.97	
7.48	110	1.15	
5.72	22	0.88	
4.84	22	0.75	
4.18	22	0.64	
3.82	4	0.59	3268
3.08	66	0.48	
2.42	110	0.37	
1.18	2	0.18	3270
0.88	22	0.14	
648.32		100.00	

spectes	САTCH/HOUR weight numbers		- of tot. c	SAsp
Herluccius capensis, female	282.00	196	40.17	3271
Merluccius paradozus, female	159.70	404	22.75	3273
Deppwater fich mixture	62.80		8.95	
MYCTOPRIDAE	51.76	4660	7.37	
Todarodes sagittatur	53. 50	210	7.34	
Merluccius capensis, male	44.20	40	6.30	3270
Helicoleaus dactylopterus	28.50	416	4.06	
merluccius paradoxus, male	9.70	26	2.38	3272
Small squids	3.10	676	0.44	
Nexumia mp.	2.86	170	0.41	
Epigonus denticulatus	2.36	110	0.34	
Galeut pollif	1.06	20	0.15	
Beryx splesdens	0.90	4	0.13	
Coelorinchus fasciatus	0.86	20	0.12	
Selachophidium guentheri	0.36	30	0.05	
Shrimpr, small, ron corm.	0. 20	30	0.03	
Lepidopus caudatur	0.10	6	0.01	
Notacanthus eexspinis	0.10	6	0.03	
tocal	702.06		100.01	

[^1]| CATCM/HOUR | | - of tot.c | SAMP |
| :---: | :---: | :---: | :---: |
| weight | numbers | | |
| 5569.20 | 40188 | 98.54 | 3280 |
| 38.10 | 390 | 0.67 | 3278 |
| 30.60 | 9792 | 0.54 | |
| 12.66 | 102 | 0.22 | 3279 |
| 1.26 | 78 | 0.02 | 3281 |
| 5651.82 | | 99.99 | |

species

Catch/Hour		2 Of tot. c	
weight	numbers		
20.20	788	37,44	3284
18.00	136	33.36	3285
8.20	112	15.20	3283
6.76	104	12.53	3282
0.40	4	0.74	
0.40	124	0.74	
53.96		100.01	

DATE:	6/5/95	GEAR TYPE: BT No:8			PROSECT Statyon:1007			
					posi	TION:Lat	s	2330
	atart	stop	duration	Long			ε	1337
time	:08:03:00	08:33:00	30 (min)	Purpose code:		3		
Log	:2421.10	2422.60	1.50			2		
FDEPTH	: 185	190		Area code :				
时EPTH	: 185	190	Validity code:					
Towing dir: $270{ }^{\circ}$			wire out: 600	00 m speed	30	kn=10		
sort	ed: 25 X		tal catch:	32.53	catc	CH/HOUR:		5.06

species

yerluecius capensis, female
ufflogobius bibazbatur
Herleccius capensis. male
terluccius capensis
Trachurus capensis
Sotal

CATCH/HOURweight numbers		Of tot. e	SAMP
182.50	186	22.51	3293
279.56	$\therefore 122$	22.14	3294
268.16	2226	20.73	3291
223.02	970	15.17	3290
62.50	82	7.71	3292
47.78	704	5.89	
23.76	4018	2.93	
23.58	666	1.67	3295
3.62	124	0.45	
3.14	10	0.39	
1.34	58	0.17	
0.94	2	0.12	3296
0.58	20	0.07	
0.56	4	0.07	3297
811.14		100.02	

Speciss	CATCh/HOOR		(OF TO	
	weight	numbers		
Merluceive capensis, female	308.00	290	42.33	3303
MYCTOPHIDAE	158.80	15656	21.82	
Merlueciuc paradoxus, female	124.00	486	17.04	3301
Merluccius capencis, male	51.30	70	7.05	3302
Trachurus capeneit	40.96	144	5.63	3298
Todarodes eagittatus	26.00	8 B	3.57	
Merlucciuc paradoxus, male	5.00	34	0.82	3300
Nexumia sp.	2.64	104	0.36	
Helicolerus dactylopterus	2.48	32	0.34	
coelorimehns fasciatus	2.40	48	0.33	
Centrolophus aiger	1.52	8	0.21	
Epigonus denticulatus	1.52	64	0.22	
Herlucciue capencix	1.12	64	0.15	3299
Galear poili	0.64	8	0.09	
gempylidae	0.16	8	0.02	
Selachophidium guentheri	0.08	16	0.01	
Total	727.62		99.98	

spectes
Merluecius paradoxus, female
Helicolenus dactylopterus
Cubiceps caerulus
Nerumia sp.
Todarodes sagittatus
Deepwater fish mixture
Selachophidium guentheri
Raja confundens
Trachyrincus scabrus
Trachurus capeosi
Grachurus capensis
Deania profundorum
Schedophilus kuttoni
Yarrella blackfordi
MYCTOPHIDAE
Epigorus denticulatus
Merluecius paradoxus, male
Galeus polis
coelorinchus coelorhinc. polli
photichthys argenteus
myctophidas
NEOSCOPELIDAE
collorinchus fasciatus
Total

CATCH/HOUR		3 Of tot.c	SAMP
262.40	348	34.31	3305
213.50	1806	27.92	
125.30	476	16.38	
28.14	910	3.68	
20.86	56	2.73	
14.70		1.92	
11.34	322	1.48	
10.64	14	1.39	
10.22	84	1.34	
9.40	6	1.23	3308
9.38	56	1.23	3306
8.50	4	1.11	3307
8.26	14	1.08	
7.28	28	0.95	
6.72	644	0.88	
6.02	756	0.79	
3.92	1078	0.51	
3.60	8	0.47	3304
2.24	42	0.29	
0.84	322	0.11	
0.42	14	0.05	
0.28	644	0.04	
0.28	84	0.04	
0.28	56	0.04	
0.28	14	0.04	
754.80		100.01	

spectes
Merluecius paradoxus female
Deania calcea
Todarodes sagittatus
Selachophidium guentheri
Helicolenus dactylopterus
Yarrelia blackfordi
Hoplostethus cademati
Raja confundens
OPISTHOTEUTHIDAE
OPISTYOTEUTHIDAE
Coelorinchus fasciatus
Galeus polli
Shrimps, small, no
Lophius vomerinus
Trachyrincus scabrus
Photichthys argenteus
polychae idae
total

CATCH/HOUR weight numbers		- of tot.c	SAMP
149.50	176	52.30	3310
54.00	28	18.89	
14.52	68	5.08	
14.48	32	5.07	
11.36	252	3.97	
9.84	20	3.44	
8.04	340	2.81	
6.20	268	2.17	
5.56	12	1.95	
4.52	16	1.58	
2.58	12	0.94	
2.12	128	0.74	
0.96	308	0.34	
0.96	2	0.34	3309
0.88	4	0.31	
0.20	24	0.07	
0.04	4	0.01	
285.86		100.01	

Species	CATCH/HOUR		: OF TOT. ${ }^{\text {c }}$	SAMP
	weight	numbe		
Merluccius paradoxus, female	255.50	218		3312
Deania calcea	174.36	78	25.77	
Todarodes sagittatus	115.10	200	17.01	
al erocephalidae	34.54	78	5.10	
Nezumia leonis	27.84	1200	4.11	
Centroscymrus coelolepis	21.80	2	3.22	
Hoplostethus cadenati	14.74	386	2.18	
Yarrella blackfordi	6.72	320	0.99	
Selachophidium guentheri	6.06	110	0.90	
Coelorinchus matamua	3.42	12	0.51	
Allocyttus verrucosus	3.42	34	0.51	
Lamprogranmus exutus	3.30	12	0.49	
Lophius vomerinus	3.12	4	0.46	3313
Merluecius paradoxus, male	1.62	2	0.24	3311
Shrimps, stall, non comm.	1.00	286	0.25	
Dicrolene intronigra	0.88	22	0.23	
Heterocarpus grimaldii	0.78	66	0.12	
POLYCHAELIDAE	0.66	44	0.20	
Notacanthus sexspinis	0.66	12	0.10	
Raja corfundens	0.56	22	0.08	
Ebinania costaecanarie	0.56	12	0.08	
Rotal	676.64		100.01	

						ROJECT Stat	ON	: 1013
DATE: E^{\prime}	9/5/95		gear type:	日T No:8	POSI	Ition:Lat	s	2319
	start	stop	duration			Long	E	1328
TIME :	:01:57:00	02:07:00	10 (min)	Purpose e	as:	3		
LOG :	: 2506.50	2506.90	0.40	Area code		2		
EDEPTH:	: 230	231		GeaxCond.	de:			
BDEPTH:	- 230	231		Validミty	ade:			
	Towing	20^{*}	wise out:	00 m Speed	30	kn*10		
Sorte	ed: 17 xg		tal catch:	19.76	catc	CH/HOUR:		8.56

SPEcIEs
Merluccius capensis, female
Merluccius capensis, male
Sufflogobius bibarbatus
Pterothrissus belloci
Austroglossus microlepis
Total

CATCH/HOLR		of tot. C	SAMP
weight	numbers		
53.10	276	44.79	3315
40.50	396	34.16	3314
14.40	3078	12.15	
9.00	90	7.59	
1.56	12	1.32	3316
118.56		100.01	

specties

Meriuccius capensis
Merluccius capensis, male
Merluccius capensis, female
Todarodes sagittatus
Merluccius capensis, juveniles sufflogobius bibarbatus
trachurus capensis, juvenile
Total

CATCH/ROUR		OF TOT. C	SAMP
weight	numbers		
5.42	204	55.08	3319
1.72	26	17.48	3317
1.12	20	11.38	3318
0.96	2	9.76	
0.62	4	6.30	3321
0.06	4	0.61	3320
0.04	8	0.41	
0.02	8	0.20	

DATE: 8	8/5/95	PROJECT STAMION:1015					
			gear type:	bT No: 8	position:Lat	s	2310
	start	stop	duration		Long	E	1358
TIME :07	07:16:00	07:46:00	30 (min)	Purpore code: 3			
Log :	: 2543.80	2545.10	1.30	Area code : 2			
FDEPTH:	136	140 Gearcond.code:					
BDEPTH:	: 136140 Validity code:						
Towing dir: 270^{*} wire out: 450 a Speed: $30 \mathrm{kn*10}$							
Sorted	d: 1 kg		tal catch:	1.22	CATCH/HOUR:		2.44

SPECIES

Merluccius capensis
Merluccius capensis, male
Merluccius capensis, female
Sufflogobius bibarbatus
Austroglossus microlepis
Total

CATCH/HOUR		3 Of tot. c	SAMP
veight	numbers		
138768	50148	70.82	3328
27834	4158	14.21	3326
25356	3522	12.94	3327
2808	5616	1.43	
1170	78	0.60	3329
1959.36		100.00	

SPECIES
Merluccius capensis, female
Trachurus capensis
Merluccius capensis, male
Merluccius paradoxus, female
Merluccius capensis,
Trachipterus jacksonensis
Merluccius capensis, female
Todarodes sagittatus, male
Merluecius capensis, male
Merluccius paradoxus, male

Total

CATCE/HOUR weight numbers		\% OF TOT. C	
394.77	360	48.70	333
248.86	856	30.70	333
62.32	101	7.69	333
49.77	284	5.14	333
23.32	1388	2.88	333
12.14	3	1.50	
6.00	60	0.74	334
4.77	8	0.59	
4.36	55	0.54	334
4.36	25	0.54	333
810.67		100.02	

Sorted: 218 Kg Total catch: 379.80 СATCH/HOणR: 757.60

pectes
Merluccius paradoxus, female
Merluccius capensis, female
Helicolenus dactylopterus
Galeus polli
Nezumia leonis
Etmopterus pusillus
Deepwater fish mixture
Etmopterus sp.
Todarodes sagittatus
Raja confundens
coelorinehus fasciatus
Epigonus denticulatus
Yarrella blackfordi
Genypterus capensis
Bassamago albescens
Shrimps, small, non comm.
Merluccius capensis, male
myctophidae
Hoplostethus cadenati
Guentherus altivela
Trachurus capensis
Selachophidium guentheri
Merluceius paradoxus, male
Laemonema laureysi

CATCH/HODR		OF TOT. C	SAMP
weight	numbers		
187.70	226	24.78	3339
171.80	50	22.68	3337
141.00	5208	18.61	
68.28	1056	9.01	
27.96	780	3.69	
25.08	72	3.31	
24.24		3.20	
24.12	36	3.18	
15.72	36	2.07	
14.52	12	1.92	
10.20	96	1.35	
9.72	312	1.28	
6.36	264	0.84	
5.84	4	0.77	3340
3.84	12	0.51	
3.60	996	0.48	
3.44	4	0.45	3336
3.24	408	0.43	
3.12	36	0.41	
2.40	12	0.32	
2.14	6	0.28	3341
1.20	256	0.16	
1.12	2	0.15	3338
0.96	12	0.13	
757.60		100.01	

DATE: 8/5/95 GEAR TYPE: bT No:8 POROJECT STATY 1019
 LOG : $2604.40 \quad 2605.70 \quad 1.30$ Area code : 2
$\begin{array}{lrrr}\text { FDEPTH: } & 500 & 497 & \text { cearcond.code: } \\ \text { BDEPTH: } & 500 & 497 & \text { validity code: }\end{array}$

spacies	CATCH/HOTR		1 OF rom. C	SAMP
	weight	numbers		
Todarodes sagittatus	56.70	92	21.62	
Merluccius paradoxus, female	51.70	52	19.72	3347
Deania calcea	35.99	28	13.72	
Nezumia sp.	32.90	1502	12.55	
Deepwater fish mixture	24.92		9.50	
Yarrella blackfordi	17.20	834	5.56	
Trachyrincus scabrus	9.20	22	3.51	
Bathylagus glacilis	6.30	470	2.40	
Shrimps, small, non comm.	5.46	1592	2.08	
Hoplostetims cadenati	5.00	266	1.91	
alepocephalidae	3.60	126	1.37	
myctophidae	3.44	484	1.31	
Coelorinchus matama	2.56	8	0.98	
Allocytus verrucosus	2.20	42	0.84	
Selachophidium guentheri	1.12	22	0.43	
Hoplostethus atlanticus	1.04	2	0.40	
Thysanoteuthis rhombus	0.98	36	0.37	
Lamprogranmus exutus	0.84	28	0.32	
Aristeus varidens	0.36	28	0.14	
Stereomastis sp.	0.28	22	0.11	
Nephrapsis atlantica	0.20	14	0.08	
Heterocarpus grimaldii	0.14	14	0.05	
Scopelosaurus meadi	0.08	8	0.03	
Total	262.20		100.00	


```
\(\begin{array}{rrrrl}\text { FDEPT: }: & 4321.40 & 2622.70 & 1.30 \quad \text { Area code : } \\ \text { : } & 426 & & \text { Gearcond.coce: }\end{array}\)
```


Sorted: 101 kg Total catch: 234.71 CATCH/HOUR: 469.42
spectes

CATCH/HOUR		Q OF TOT. C	SAMP
weight	numbers		
129.30	192	27.54	3349
118.20	840	25.18	
92.40	1068	19.68	
38.76	1416	8.26	
22.08	60	4.70	
12.84		2.74	
12.60	2	2.68	
11.40	72	2.43	
9.60	168	2.05	
5.88	120	1.25	
3.96	4	0.84	3350
3.52	8	0.75	3348
2.52	360	0.54	
2.04	48	0.43	
1.80	96	0.38	
1.44	36	0.31	
1.09	268	0.23	
469.42		99.99	

DATE: 9/5/95 GEAR TYPE: BT NO:8 POSITION:Lat $S 2249$

spectes
Meriuccius capensis, femsie
Merluccius paradoxus, female
sehedophilus huttoni fema
Merluccius capensis, mal
Deepwater fish mixture
Trachipterus jacksonensis
Merluecius paradoxus, male
yerluceius paradoxus, fernale
Coelorinchus fasciatus
centrolophus niger
Genypterus capensis
Nezumia Ieonis
Malacocephalus laevis
coelorinchus coelorhine. polli
Galeus polli
Chlorophthalmus atlanticus
Ebinamia costaecanarie
Todaropsic eblanae

Total
CATCH/HOUR OF TOT. C SAMP

species
Merluccius capensis, female
rachurus capensis
Derluccius capensis, maler fish mixture
Merluccius paradoxus,
erlorocius paradoxus, female
Galeus polli
Todarodes sagittatus
coelorinchus fasciatus
MYCTOPHIDAE
synagrops microlepis
cophius vomerinus
Merluecius paradoxus, male
Trigla 2yra
Austroglossus microlepis
Helicolenus dactylopterus
shrimps, small, non coom.
Total

CATCH/HOOR		- of tot. c	SAMP
weight	numers		
193.00	214	42.66	3370
76.30	148	16.87	3373
58.00	92	15.03	3369
43.96		9.72	
30.30	144	6.70	3372
16.02	2234	3.54	
8.40	190	1.85	
6.90	12	1.53	
3.78	90	0.84	
1.48	204	0.33	
1.42	172	0.31	
0.84	2	0.19	3375
0.54	2	0.12	3374
0.48	2	0.11	3371
0.34	4	0.08	
0.20	2	0.04	3376
0.18	6	0.04	
0.18	6	0.04	
0.06	12	0.01	
452.38		100.02	

DATE:10/ 5/95		PROJECT Station:1026						
			GEAR TYPE:	: BT No:8	pos	Ition:Lat	s	2250
start stop			curation			Lопg	E	1338
time :	12:25:00	12:35:00	10 (min)	Purpose	de:	3		
LOG :	2839.80	2840.30	0.50	Area code				
FDEPTH:	134	134		Gearcond.	ode:			
BDEFTH:	134	134	Wire out: $\begin{aligned} & \text { Validity code: } \\ & 400 \mathrm{~m} \text { Speed: } 300 \mathrm{kn*10}\end{aligned}$					
Towing a		: 90^{*}						
Sorted	d: 28 Kg		tal catch:	45.24	cat	CH/HOUR:		1.44

spectes
Merluceius capensis
Merluecius capensis, male
Merluccius capensis, female
Sufflogobius bibarbatus
Schedophilus huttoni
Chelidonichthys queketti
Chloraphehalmus pumetatus
Total

CATCH/HOCR weight numbers		- of tot. C	SAMP
135.78	5910	50.02	3377
64.20	1050	23.65	3378
60.78	1188	22.39	3379
8.58	2190	3.16	
1.14	6	0.42	
0.90	6	0.33	
0.06	6	0.02	
271.44		99.99	

spectes	Catch
	weight
NOCATCH	0.00

Total

DATE:15/						PROTECT STATION:1028						
	/ $/ 985$start stop		GEAR TYPE: BT No: 6 duration				Ition: Lat	s	2228			
				Long	E	1328						
time :0	:05:47:00	06:07:00				20	(min)	Purpose	e:	3		
Log :	:3014.00	3015.00	1.0		Area code	:	2					
5DEFTH:	128	128			Gearcond.	de:						
BDEFTH:	128	128			Validity	ode:						
Towing dis		r: 153°	wir	ut:	20 m speed	3	ka*10					
Sorted:		Total catch:			CATCR/HOUR:							

$\begin{array}{lc}\text { SPECIES } & \begin{array}{c}\text { CATCH/HOUR } \\ \text { NO CATCH }\end{array} \\ \text { weight TOT. C } \\ \text { nambers }\end{array}$ 0.00

Total

DATE:15/	/ 5/95	GEAR TYPE: BT No: 6			PROJECT STATION:1029			
						ition:Lat	S	2230
	start	stop	duration			Leng	E	1326
time :0	09:02:00	09:14:00	12 (mia)	Purpose code: 3				
LOG :	3034.40	3035.10	0.70	Area code : 2				
FDEFTH:	207	205		Gearcond.code:				
bDEFTH:	207	205		Validity	ode:			
Towing cir: 128^{*} wire out: 700 m Speed: $32 \mathrm{kn*} 10$								
Sozted	d: 42 kg		tal catch:	135.20	cat	CH/HOUR:		6.00

species
Trachurus capensis
Merluccius capensis, female
Merluccius capensis, male
Squalus megaiops
Sufflogobius bibarbatus
Todaropsis eblanae
Total

CATCH/HOLR		OF TOT. C	SAMP
weight	numbers		
342.05	2550	50.60	3380
208.00	2000	30.77	3382
117.80	1510	17.43	3381
3.75	15	0.55	
2.75	455	0.41	
1.65	50	0.24	
675.00		100.00	

DATE: $15 / \begin{gathered}\text { 5/95 } \\ \text { start }\end{gathered}$	Project station: 1032						
		GEAR TYPE:	BT No: 6	POSI	Ition:Lat	s	2229
	stop	duration			Long	E	1247
TIME :16:40:00	17:10:00	30 (min)	Purpose	,	3		
LoG :3084.90	3086.50	1.60	Area code	:	2		
FDEPTH: 488	500		Gearcond.	code:			
BDEPTH: 489	500		Validity	de:			
Towing di	$x: 360^{\circ}$	Wire out:1450	50 m Spee	30	kn*10		
Sorted: 233 kg		tal catch:	514.85	Catc	Ch/HOUR:	1029	. 70

SPDCTES	CATCH/HOUR		Of rom. C	SAMP
	weight	numbers		
Trachyrincus seabrus	443.90	1904	43.11	
Merluccius paradoxus, female	373.30	354	36.25	3403
Nezumia sp.	55.20	1472	5.36	
Epigonus telescopus	38.40	344	3.73	
Helicolenus daetylopterus	32.74	216	3.08	
Todarodes sagittatus	21.26	70	2.05	
Lophius vomerinus	20.30	8	1.97	3404
Lophius vaillanti	15.90	2	1.54	3405
Deepwater fish mixture	12.66		1.23	
Selachophidium guentheri	9.66	284	0.94	
Merluccius paradoxus, male	2.18	2	0.21	3402
shrimps, small, non comm.	1.38	322	0.13	
nyctophidas	1.26	215	0.11	
Yarrella blackfordi	1.26	136	0.11	
Hoplostethus cadenati	1.16	70	0.11	
Raja confundens	0.44	22	0.04	
total	2029.70		99.97	

:15/	5/95 stop		GEAR TYPE: BT No:6			projece
			durati			
TIME :	18:57:00	19:27:00	30	(min)	Purpose code:	
LOG	: 3094.10	3095.70	1.60		Area tode	2
EDEPTA:	595	580			Gearcond.code:	
BDEPTM:	: 595	580			validity code:	
	Towing	10^{*}	wir	at:	$50 \mathrm{~m} \text { speec: } 32$	k

Sorted: 272 kg Total catch: 505.84 CATCH/HOUR: 1013.68

CATCH/HORR			
weight	numbers	OF TOT. C	SAMP
477.06	464	47.06	3407
230.40	224	22.73	
86.40	1264	8.52	
63.84		6.30	
57.28	80	5.65	
17.92	48	1.77	
14.40	240	1.42	
14.08	224	1.39	
11.86	2	1.27	3408
10.24	32	1.01	
9.12	32	0.90	
5.60	48	0.55	
4.80	32	0.47	
3.84	128	0.38	
2.89	32	0.28	
2.24	880	0.22	
1.62	2	0.16	3406
0.10	2	0.01	
1013.68		99.99	

spbetes	CATCH/HOUR		- of tot. c	SAMP
	weight	numbers		
Merluecius paradoxus, female	187.10	215	61.40	3409
Trachyrincus scabrus	42.80	176	13.72	
Nezumia sp.	16.04	1314	5.26	
Shrimps, small, non comm.	12.72	21085	4.17	
Hoplostethus cadenati	12.08	1726	3.96	
Fhotichthys argenteus	8.64	1404	2.84	
Deania profundorum	7.76	8	2.55	
Lophius vaillanti	5.40	1	1.77	3411
Merluccius paradoxus, male	3.60	5	1.18	3410
Helicolenus dactylopterus	3.00	4	0.98	
Laemonema laureysi	2.32	52	0.76	
Epigonus denticulatus	1.64	48	0.54	
Todaroces sagittatus	1.20	4	0.39	
NEMICHTHYIDAE	0.40	4	0.13	
Yarrella blackfordi	0.28	28	0.09	
Aristeus varidens	0.24	32	0.08	
CROSTACEANS	0.16	8	0.05	
Notacanthus sexspinis	0.16	4	0.05	
Ebinania costameanarie	0.12	4	0.04	
moridae	0.08	4	0.03	
total	304.74		99.99	

Sorted: 258 kg Total catch: 670.42 CATCH/HOUR: 1340.84

SPECIES	CATCH	Hovr	* or tot. c	SAMP
	weight	numbers		
trachyrincus scabrus	549.10	4814	40.95	
Merluccius paradoxus, female	429.90	730	32.06	3414
Helicolenus dactylopterus	195.52	2006	14.66	
Deepwater fish mixture	58.48		4.36	
Nezumia sp.	39.78	986	2.97	
Merluccius paradoxus, male	13.90	50	1.04	3413
Etmopterus pusillus	1.84	34	0.66	
Todarodes sagittatus	7.66	16	0.57	
Merluceius capensis, female	7.52	2	0.56	3412
Aristeus varidens	6.46	680	0.48	
Epigonus telescopus	5.44	68	0.41	
Lophius vomerinus	5.00	4	0.37	3415
Laemonema laureysi	4.08	34	0.30	
Hoplostethus cadenati	3.74	238	0.28	
Selachophidium guentheri	2.38	34	0.18	
Notacanthus sexspinis	2.04	1.02	0.35	
Total	1340.84		200.00	


```
\(\begin{array}{llllll}\text { TIME } & \text { :08:16:00 } & 08: 46: 00 & 30 & \text { (min) Purpose code: } \\ \text { LOG } & : 3146.10 & 3147.70 & 1.60\end{array}\)
```



```
\(\begin{array}{llll}\text { FDEPTH: } & 353 & 338 & \text { Gearcoad. code: } \\ \text { BDEPTH: } & 353 & 338 & \text { validity code: }\end{array}\)
3DEPTH: Towing dir: \(352^{\circ}\) Wire out:1050 m Speed: \(31 \mathrm{kz*} 10\)
    Sorted: 234 kg TOtal catch: 234.73 CATCH/HOUR: 469.46
```


CATCH/HOUR		\& оf тот. c	SAMP
weight	numbers		
247.40	190	52.70	3417
75.50	44	16.08	3423
47.80	248	10.18	3419
25.10	442	5.35	
15.50	14	3.30	3436
11.90	8	2.53	3420
9.00		1.92	
7.84	310	1.67	
6.02	2	1.28	
3.42	72	0.73	
3.18	4	0.68	
2.46	16	0.52	
2.44	4	0.52	
1.96	4	0.42	
1.94	82	0.41	
1.68		0.36	
1.56	8	0.33	3418
1.26	2	0.27	3422
1.06	34	0.23	
1.00	4	0.21	3421
0.56	44	0.12	
0.54	36	0.12	
0.34	18	0.07	
469.46		100.00	

DATE:16/	6/ 5/95		GEAR TYPE: BT Ne: 6		Project station:1037			
					POSI	Ition:Lat	s	2208
	start	stop	duration			Long	E	1304
time :	:10:48:00	11:22:00	34 (min)	Purpose	(3		
Loc :	:3161.70	3163.60	1.90	Area code		2		
FDEPTH:	: 249	243		Gearcond.	de:			
SDEPTH:	- 249	243		validity	de:			
	Towing di	: 120°	wire out:	m speed	30	$\mathrm{kn} * 10$		

Sorted: 180 Kg Total catch: 482.25 CATCH/HOUR: 852.03

spectes	CATCH/HOUR weight numbers		1 Of tot.c	
Merluccius capensis, male	311.47	685	36.60	3427
Merluceius eapensis, female	244.09	798	28.68	3426
Trachurus capensis	160.54	639	18.86	3429
Pterothrissus belloci	49.75	2084	5.85	
Sufflogobius bibarbatus	41, 15	8231	4.84	
Merluecius capensis	21.35	681	2.51	3428
Galeus polli	8.54	311	1.00	
Todaropsis eblanae	6.42	2381	0.75	
Lophius vomerinus	3.97	12	0.47	3424
coelorinchus fasciatus	1.16	32	0.14	
Todarodes sagittatus	0.85	2	0.10	
Synagrops microlepis	0.79	94	0.09	
Austroglossus microlepis	0.72	2	0.08	3425
CRABS	0.21	5	0.02	
total	851.01		99.99	

SPECIES	CATCH/HOTR		1 OF TOT. C	
	weight	numbers		
Merluccius capensis, female	447.00	2830	40.03	3430
Merluccius capensis, male	278.00	2510	24.89	3431
Trachurus capensis	222.50	1620	19.92	3434
Pterothrissus belloci	93.00	917	8.33	
Suffloçobius bibarbatus	28.60	5753	2.56	
Lophius vomerinus	12.33	10	1.10	3435
Merluccius capensis	12.00	440	1.07	3432
Todaropsis eblanae	9.00	250	0.81	
Dentex macrophtinalmus	7.70	30	0.69	3433
Squalus megalops	3.50	10	0.31	
Lepidopus caudatus	2.80	20	0.25	
Gaieus polli	0.30	10	0.03	
	:116.73		99.99	

spectiss

Merluccius paradoxus, female
Hoplostethus cadenati
Deania calcea
Deania calced
Nezumia sp.
Todarodes sagittatus
Yarrella blackfordi
Lophius vomerinus
Merluecius paracoxus, male
MYCTOPHIDAE
Shrimps, small, nox comm.
Photichthys argenteus
Epigonus
Total

Sorted: 145 kg Total catch: 330.74 CATCH/HOUR: 661.48

SPECIES
Trachyrincus scabrus
Meriuccius paradoxus, femal
Hoplostethus cadenati
Nezumia sp.
Helicolenus dactylopterus
Todarodes sagittatus
Yarrella blackfordi
Merluccius paradoxus, male
Shrimps, small, non comm.
Epigonus denticulatus
MXCTOPHIDAE
Notacanthus sexspinis
Total

CATCH/HOUR		\% Of tot. C	SAMP
weight	numbers		
286.20	1566	43.27	
212.10	392	32.06	3447
48.78	6966	7.37	
25.92	1998	3.92	
20.30	14	3.07	3449
19.98	54	3.02	
12.60	35	1.90	
11.16	1836	1.69	
10.40	24	1.57	3448
9.18	4230	1.39	
2.88	144	0.44	
1.26	414	0.19	
0.72	72	0.11	
0.02	18		
561.50		100.00	

speries	CATCH/HOUR weight numbers		\& of tot. C	SAMP
Helicolenus dactylopterus	190.80		51.84	
Meriuccius paradoxus, female	100.40	212	27.28	3451
Krill	15.20		4.13	
Merluccius capensis, female	13.64	8	3.71	3450
Galeus polli	9.36	104	2.54	
Nezumia sp.	7.76	272	2.11	
Solenocera africana	4.80	704	1.30	
Wophivs vomerinus	4.00	8	1.09	3453
Trachyrincus scabrus	3.92	26	1.07	
Coelorinchus coelorhinc. polli	3.36	72	0.91	
Selachophidium guentheri	3.20	128	0.87	
Ebinania costaecanarie	2.96	24	0.80	
SHRIMPS	2.56	704	0.70	
Hoplostethus cadenati	2.08	384	0.57	
Yarrella biackfordi.	1.20	200	0.33	
Epigonus denticulatus	0.64	88	0.17	
Notacanthus sexspinis	0.64	40	0.17	
Merluccius paradoxus, male	0.64	2	0.17	3452
MYCTOPHIDAE	0.48	152	0.13	
RAJIDAE	0.24	8	0.07	
Todaropsis eblanae	0.16	8	0.04	
Total	368.04		100.00	

SPEcIEs
Merluccius capensis, female
Coelorinchus fasciatus
Merluccius capensis, male
Galeus polli
Lophius vomerinus
Squalus megaiops
Chlorophthalmus atlanticus
Pterothrissus belloci
Austroglosus microlepis
Helicolenus dactylopterus
Synagrops microlepis
Todaropsis eblanae
Merluceius capensis
Mrctophidae
Todarodes sagittatus
Sufflogobius bibarbatus
Dentex macrophthalmus
Krill
Solenocera africana
Bathynectes piperitus
Total

CATCH/HOUR		\% OF тоt. C	SAMP
weight	numbers		
71.80	98	50.80	3455
19.90	574	14.08	
8.00	28	5.66	3454
7.74	162	5.48	
7.20	24	5.09	3458
6.86	2	4.85	
3.76	224	2.66	
2.82	16	2.00	
2.76	16	1.95	3457
1.88	20	1.33	
1.86	236	1.32	
1.46	38	1.03	
2.26	50	0.82	3456
1.10	392	0.78	
0.84	2	0.59	
0.78	166	0.55	
0.64	2	0.45	
0.60		0.42	
0.14	30	0.10	
0.04	2	0.03	
141.34		99.99	

spectes
Trachurus eapensis
Merluccius capensis, ferale
Merluccius capensis, female
Merluccius capensis, male
Merluccius capensis, male
Lophius vomerinus
Galeus polii
Todaropsis eblanae
Sufflegobius bibarbatus
Iepidopus caudatus
Merluccius capensis
Pterothrissus belioci
Austreglossus microlepis
trigla lyra
Total

Catch/hour		\% Of Tot. C	
weight	numbers		
573.27	5318	73.57	3465
71.05	120	9.12	3462
58.64	581	7.53	3464
48.55	510	6.23	3463
11.73	33	1.51	3451
3.98	3	0.51	3459
3.11	74	0.40	
1.99	55	0.26	
1.91	273	0.25	
1.42	8	0.18	
1.28	46	0.16	346
1.28	27	0.16	
0.82	3	0.11	3460
0.25	.	0.03	
779.28		100.02	

DATE:18/ 5 /95	stop			PROJECT STATION:1346			
		GEAR TYPE	BT No: 6	POSI	itian:Lat	S	2124
		duration			Vong	E	1258
TIME :13:36:00	14:06:00	30 (min)	Purpose	de:	3		
LOG : 3404.90	3406.60	1.70	area code	:	2		
FDEPTH: 255	252		Gearcond.	ode:			
BDEPTH: 255	252		valicity	ode:			
Towing di	r: 355*	wire out: 850	50 m spee	30	kn*10		
sorted: 135 Kg		tal catch:	135.21	CATC	CH/HOUR:		70.42

species	CATCH/HOTR		2 of tot. c	SAMP
	weight	pumbers		
Merluccius capensis, female	163.30	524	60.39	3471
Merluccius capensis, male	82.50	396	30.51	3472
Dentex macraphthalmus	9.50	34	3.51	3474
Merluccius eapensis	5.26	212	2.95	3473
Sufflogobius bibarbatus	3.72	886	2.38	
Eophius vomerinus	2.24	2	0.83	3475
myctophidas	1.74	916	0.64	
Pterothrissus belloci	0.72	36	0.27	
Krill	0.68		0.25	
Synagrops microlepis	0.45	72	0.17	
Todaropsis eblanae	0.20	6	0.07	
Galeus polli	0.06	2	0.02	
chiorophthalmus atlanticus	0.04	4	0.01	
Total	270.42		200.00	

specties
Merluceius eapensis, female
Merluccius capensis, male
chiorophthalmus atlanticus
Coelorinchus fasciatus
rodarodes sagittatus
Nezumia Sp.;
aleus polli
Lophius vomerinu
Coelorinchus coelorhine. polli
Synagrops microlepis
Todaropsis eblanae
Austroglossus microlepis
MYCTOPHIDAE
hoplostethus cadenati
rotal

CATCH/HOUR		OF TOT. C SAM	
weight	numbers		
46.50	42	53.98	3477
15.50	24	17.99	3476
6.72	264	7.80	
3.04	112	3.53	
2.48	8	2.88	
2.40	88	2.79	
2.16	16	2.51	
2.10	2	2.44	3479
1.20	8	1.39	
1.14	8	1.32	3478
0.96	80	1.11	
0.64	16	0.74	
0.42	2	0.49	3480
0.40	224	0.46	
0.40	8	0.46	
0.08	24	0.09	
86.14		99.98	

spectes
achyriacus scabrus, femal ezluccius parado cophius vaillanti Peania calcea
odarodes sagittatus
hotichthys argenteus
chedophilus huttoni YYCTOPHIDAE
Epigonus telescopus
Ebinania costaecanarie
Nephropsis atlantica
Yarrelia blackfordi
ommastrephes pteropus SHRIMPS
Nemichthys eurvirostris
tereomastis sculpta
total

Soxted: 15 Kg Total catch: 62.08 CATCH/HOUR: 124.16
spectes
Merluccius capensis, £emale erluccius capensis, male Lophius vamerinus
Rexanchus griseu
Eaja confundens
elicolenus dactylopterus
chlorophthalmus atlanticus
coelorinctus coelorhinc. polli
rodarodes sagittatus
coelorinchus fasciatus
MYCTOPHIDAE
solenocera africana
Galeus polli
elachophidium guentheri
galatheidae
Ebinania costaecamarie Notacanthes sexspinis
rotal

CATCE/HOUR		1 Of mot. c	SAMP
42.80	50	33.67	3498
19.00	32	15.30	3497
18.14	18	14.61	3500
11.30	2	9.10	
8.14	20	6.56	
3.68	258	6.19	
5.50	270	4.43	
4.56	14	3.67	3499
3.36	184	2.71	
1.98	6	1.59	
1.92	64	1.55	
0.18	72	0.14	
0.16	30	0.13	
0.16	4	0.13	
0.10	10	0.08	
0.06	4	0.05	
0.06	48	0.05	
0.04	4	0.03	
0.04	4	0.03	
124.18		100.02	

spectes

Merluccius capensis, female
Merluccius capensis, mal
Merluccius capensis
Trachurus capensis
Austroglossus microlepis
pterothrissus belloci
Ophius vomerinus
sufflogobius bibarbatus
total

CATCH/HOJR		OF TOT. C	SAMP
weight	numbers		
66.75	396	57.10	3505
32.10	333	27.46	3501
12.81	51	10.96	3503
2.31	93	1.98	3502
1.17	6	1.00	3532
1.17	3	1.00	3504
0.54	9	0.46	
0.03	3	0.03	
0.03	3	0.03	
126.91		100.02	

spectes	CATCH/Hodr		of tor.	
	weight	cumbers		
Merluccius capensis, male	16.50	206	42.01	3506
merluccius capensis, female	13.34	84	33.96	3509
Dentex macrophthalmus	3.28	1.2	8.35	3508
mYCTOPHIDAE	2.40	2400	6.11	
Pterothrissus belloci	1.22	18	3.11	
Todarodes sagittatus	1.00	6	2.55	
Trachurus capensis	0.74	2	1.88	3507
Krill	0.62		1.58	
Sufflogobius bibarbatus	0.12	18	0.31	
Synagrops microlepis	0.06	6	0.15	
Total	39.28		100.01	

SPECiEs	CATCH/HOUR weight numbers		3 of tot. C	SAMP
Meriuccius capensis, male	20.80	40	36.47	3512
Meriuccius capensis, female	15.60	40	27.35	3513
Pterothrissus belloci	6.92	144	12.13	
Squalus acanthias	4.54	2	7.96	
chlorophthalmus atlanticus	2.42	165	4.24	
Neoharriotta pinnata	2.32	2	4.07	
Austroglossus microlepis	2.12	5	1.96	3510
Todarodes sagittatus	0.90	4	1.58	
Sypagrops microlepis	0.58	104	1.02	
Lophius vomerinus	0.52	2	0.91	
Solenocera africana	0.30	64	0.53	
Dentex macrophthalmus	0.30	2	0.53	3511
Chelidonichthys capensis	0.24	2	0.42	
Bassamago albescens	0.28	2	0.32	
Sufflogobius bibarbatus	0.16	12	0.28	
myetophidas	0.06	30	0.11	
Meriuccius capensis	0.06	4	0.11	3514
rrachurus capedsis	0.02	8	0.04	3515
Total	57.04		200.03	

Sorted: 155 kg Total catch: 169.25 CATCH/HOUR: 338.50

SPECIES
Merluccius capensis, femile
Helicolenus dactylopterus
Merluccius paradoxus, female
Merluccius capensis, male
Lophius vomerinus
Galeus polli
Coelorinchus fasciatus
Nezumia sp.
Austroglossus microlepis
Coelorinchus coelorhinc. pol
Merluecius paradoxus, male
hyctophidas
Chlorophthalmus atlanticus
shrimps, small, non comm.
Ebinamia costaecanarie
Bassanago albescens
Malacocephalus occidentalis

Total

CATCK/HOOR			
weight	numbers	OF TOT. C	SAMP
208.00	136	61.45	3517
35.40	1300	10.46	
28.40	52	8.39	3519
26.40	32	7.80	3516
15.32	10	4.53	3520
7.52	156	2.22	
7.16	112	2.12	
4.08	272	1.21	
1.78	2	0.53	3521
1.40	40	0.41	
1.40	6	0.41	3518
0.52	128	0.15	
0.36	12	0.11	
0.20	68	0.06	
0.20	12	0.06	
0.12	4	0.04	
0.12	8	0.04	
0.12	4	0.04	
338.50		100.03	

species
Trachyrincus scabrus
Merluccius paradoxus, female
Nezumia sp.
ophins vomerinus
elicolenus dactylopterus
Raja doutrei
eania profundorum
erluccius paradoxus, male
Hoplostethus cadenati
Todarodes sagittatus
Yarrella blackfordi
erluccius capencis, female
shrimps, small, non comm.
ONOSTOMATYDAE
athynectes piperitus
Total

CATCH/HOLR		OF TOT.	SAMP
weight	numbers		
346.80	4154	54.82	
135.00	362	18.18	3524
45.36	2040	7.17	
38.20	22	6.04	3525
29.52	456	4.67	
10.10	2	1.60	
9.12	24	1.44	
8.90	28	1.41	3523
8.40	336	1.33	
7.76	16	1.23	
5.52	280	0.87	
2.94	2	0.46	3522
2.40	696	0.38	
1.20	192	0.19	
1.20	24	0.19	
0.24	24	0.04	
632.66		100.02	

species

rachyrincus scabrus Nezumia $s p$
rodarodes sagittatus
Hoplostethus cadenati
ophius vorerinus
Helicolenus dactylopterus
pigonus denticulatus
TRACHICHTHYIDAE
Raja confundens
Yarrella blackfordi
Notacanthus sexspinis
selachophidium guentheri
Total

CATCH/HOUR			OF TOT. C
Weight	Sumbers		
398.25	1512	44.91	
259.20	366	29.23	3526
108.27	2997	12.21	
50.76	243	5.72	
21.87	783	2.47	
20.10	6	2.27	3528
11.88	108	1.34	
4.05	9	0.46	3527
2.70	27	0.30	
2.43	54	0.27	
2.43	27	0.27	
1.89	81	0.21	
1.62	81	0.18	
1.35	27	0.15	
886.80			99.99

Sorted: 27 kg Total catch: 396.79 CATCH/HOUR: 793.59

SPECIES	CATCH/HOUR		- OF TOT. C SAMP	
	weight	numbers		
Herluccius paradoxus, female	229.50	236	28.92	3574
Trachyrincus scabrus	158.40	528	19.96	
Hoplostethus cadenati	102.72	3960	12.94	
Deanita calcea	95.52	48	12.04	
Nezumia sp.	83.76	4752	10.55	
Alepoeephalus sp.	33.60	768	4.23	
Lamprograminus exutus	20.88	240	2.63	
Todarodes sagittatus	19.20	24	2.42	
Trachipterus jacksonensis	19.00	4	2.39	
Lophius vomerinus	11.32	4	1.43	3575
Yarrelia blackfordi	6.00	312	0.76	
Selachophidium guentkeri	3.36	96	0.42	
merluccius paradoxus, male	2.64	4	0.33	3573
Raja confundens	1.44	48	0.18	
Bathyuroconger vicinus	1.44	48	0.18	
Ebinania costaecanarie	1.44	24	0.18	
Shrimps, small, non comm.	1.20	264	0.15	
Neoscopelus macrolepidotus	1.20	24	0.15	
Aristeus varidens	0.96	72	0.12	
Total	793.58		99.98	

species
Dentex macrophthalmus
Merluccius capensis, female
Merluccius capensis, male
Raja confundens
Lophius vomerinus
pterathrissus belloci
Total

CATCH/HOUR OF TOT. C SAMP

CATch/HOUR		OF TOT.	SAMP
weight	numbers		27.88
16.84	32	3583	
14.80	32	24.50	3581
13.20	44	21.85	3582
5.20	8	8.61	
5.12	4	8.48	3584
3.84	44	6.36	
1.40	4	2.32	

Sorted: 93 Kg Total catch: 93.08 CATCH/HOUR: 186.16
SPECIES
Merluccius capensis, female
Merluccius capensis, rale
Dentex macrophthalmus
Sufflogobius bibarbatus
Zophius vomerinus
Mycrophidas
Austroglossus microlepis
Merluccius capensis
Trachurus capensis
Krill
Raja corfundens
Nemichthys curvirostris
Pterothrissus belloci
Trachurus capensis, juvenile
Total

CATCH/HOURweight gumbers		\% of tot. c	SAMP
87.00	420	46.73	3586
75.70	378	40.66	3585
7.10	32	3.81	3591
7.04	748	3.78	
6.30	2	3.38	3588
0.92	690	0.49	
0.70	2	0.38	3589
0.52	18	0.28	3587
0.52	4	0.28	3592
0.16		0.09	
0.10	4	0.05	
0.06	18	0.03	
0.02	4	0.01	
0.02	10	0.01	3590
186.16		99.98	

DATE: $21 /$	/ 5/95	stop	gear type. bt No: duration		PROJECT STATION:1066			
					POSI	Ition:Lat	S	2008
						Long	E	2229
TIME :05:32:00 05:52:00 21 (mia) Purpose code: 3								
LOG : 3740.50 3742.50 1.00 Area code								
FDEPTH: 260 179 Gearcond, code:								
BDEPTH: 160 179 Validity code:								
Towing dir: 345^{*} wire out 630 m Speed: $30 \mathrm{kn} * 10$								
sorted	d: 12 kg		tal eateh:	12.76	catc	CH/HOCR:		36.46

species

Merluccius capensis, female Merluceius eapensis, male
dentex macrophthalmus
Sufflogobius bibarbatus
rachurus capensis
rotal

CATCH/HOOR		- of tot. C	SAMP
19.91	154	54.61	3594
23.60	109	37.30	3593
1.74	6	4.77	3595
0.80	229	2.19	
0.40	240	1.10	3596

spectiss
Merluccius capensis, male
Merluccius capensis, Eemale
Sufflogobius bibarbatus
rachurus capensis, juvenile
rodaropsis eblanae
rotal

CATCH/HOUR			
veaght	numbers	OF TOT. C	SAMP
6.54	58	49.52	3598
4.88	40	37.25	3597
1.52	336	11.60	
0.10	36	0.76	3599
0.04	4	0.31	
0.02	2	0.15	

DATE:21/	/ 5/95	GEAR TYEE: BT NO:				PROJECT STATION:1068			
						POSI	ITION:LAt	S	2011
	start	stop duration					Long	E	1221
TIME :09:11:00 09:41:00 30 (min) Purpose code; 3									
-OG $\quad 3759.903761 .40 \quad 1.50$ Area code :									
FDEPTH:	= 280	286			Gearcond	ode:			
BDEPTH:	= 280	286			Validity	ode:			
Towing dir: 260° wire out: 900 m Speed: $30 \mathrm{kr}{ }^{\text {* }}$									
sorted	d: 52 kg		tà	teh:	52.23	CATC	CH/HOUR:		4.45

SPECIES	CATCH/HOUR		8 Of tet. c	SAMP
	weight	numbers		
Merluccius capensis, female	52.80	410	50.55	3601
Merluccius capensis, male	37.00	308	35.42	3600
Dentex macrophthalmus	12.10	30	11.58	3603
sufflogobius bibarbatus	1.56	266	1.49	
Merluccius capensis	1.00	42	0.96	3602
Total	104.46		100.00	

DATE:21/	$\text { 1/ } \begin{gathered} 5 / 95 \\ \text { start } \end{gathered}$	stop	gear type: bt No: duration			PROJECT STATIOR:1069			
						POSITION:Lat		S 2014	
							Jong	E	1205
TIME : 1	10:56:00	11:26:00	30	(min)	Purpose co	e:	3		
Log :	3767.90	3769.40	1.50		Area code		3		
EDEPTH:	310	315			Gearcond.	de:			
BDEPTA:	310	315			validity	de:			
	Towing	: 180^{*}	ni	ut: 10	30 m spee	30	kn*10		

Sorted: 239 Kg Total catch: 947.46 CATCH/HOUR: 1894.92

spectes	CATCH/HOER		2 of tot. C	SAMP
	weight	numbers		
Dentex macrophthalmus	403.00	1780	21.27	3614
Merluccius capensis, female	389.28	698	20.54	3609
pterothrissus belloci	266.40	3450	14.06	
Herluccius capensis, male	177.50	470	9.37	3610
Lophius vomerinus	150.20	288	7.93	3611
Helicolenus dactylopterus	106.20	4036	5.60	
PORTUNIDAE	104.60	2786	5.52	
chlorophthalmus atlanticus	104.40	5668	5.51	
Austroglossus microlepis	55.60	206	2.93	3612
Deepwater fish mixture	52.40		2.77	
Synagrops micxolepis	39.60	4500	2.09	
Solenocera africana	21.40	4938	1.13	
Coelorinchus fasciatus	11.20	340	0.59	
Galeus polli	4.20	140	0.22	
Murida sp.	2.80	260	0.15	
Chelidonichthys queketti	2.80	160	0.15	
Lophius vaillanti	2.34	2	0.12	3613
nemichthyidae	1.00	20	0.05	
Total	1894.92		100.00	

Spectes	Catch/r		OF	
	weight	numbers		
Merluccius capensis, female	83.50	808	57.11	3646
merluccius capensis. male	58.00	612	39.67	3645
trachurus capensis	2.26	32	1.55	3648
Sufflogobius bibarbatus	1.60	290	1.09	
Dentex macrophthalmus	0.48	2	0.33	
Merluceius eapensis	0.16	8	0.11	3647
Chatrabus melanuris	0.12	2	0.08	
Trachurus capensis, juverile	0.10	16	0.07	3649
Total	146.22		100.01	

DATE:23,	3/5/95	stop	GEAR TYPE: BT NO: duration		PROJECT STATION:1078		
					ItIon: Lat	s	1927
	start				Long	E	1213
TIME : 0	:05:34:00	06:04:00	30 (min)	Purpose code:	3		
LOG :	:3932.60	3934.10	1.50	Area code	3		
EDEPTH:	194	192		Gearcond.code:			
BDEPTH:	194	192		validity code:			
	Towing	: 345°	Wire out:	80 m speed: 30	kn*10		

| SPECIES | CATCH/HOUR
 weight | | numbers | OF TOT. C |
| :--- | ---: | ---: | ---: | ---: | SAMP

spectes	CATCH/HOUR		- of tot. c	SAMP
	weight	numbers		
Merluccius capensis, female	512.40	616	60.99	365.5
Merluccius capensis, male	167.34	274	19.92	3655
Deatex macrophthalmus	69.42	210	8.26	3657
Helicolenus dactylopterus	26.90	1210	3.20	
Trachurus capensis	23.34	76	2.78	3658
chlorophthalmus atlanticus	14.20	524	1.69	
Krill	9.54		1.14	
Synagrops mierolepis	8.86	770	1.05	
Hyperoglyphe moselii	3.16	4	0.38	
Todarodes sagittatus	1.58	4	0.19	
Pterothrissus bellaci	1.24		0.15	
Galeus polli	1.12	12	0.13	
Coelorinchus coelorhinc. polli	0.58	20	0.07	
myctophidas	0.22	132	0.03	
Nezumia sp.	0.22	14	0.03	
Total	840.12		100.01	

$840.12 \quad 100.01$

SPECIES
Merluccius capensis, female
Meriuccius capensis, male
Helicolenus dactylopterus
Deepwater fish mixture
Lophius vomerinus
Trachurus capensis
Chlorophthalmus atlanticus
Galeus polli
coelorinchus coelorhinc. polli
Nezumia sp.
Dentex macrophthalmus
Todarodes sagittatus
Herluecius paradoxus, female
Synagrops microlepis
PORTUNIDAE
NEMICRTHYDAE
Ebinania costaecanarie
Halacocephlus laevis
Epigonus telescopus
Totai

CATCH/HOUR		OF TO\%. C	SAMP
weight	numbers		
887.18	928	58.86	3659
265.60	338	17.69	3650
108.34	2468	7.19	
46.50		3.08	
45.30	38	3.01	3654
33.88	100	2.25	3662
27.32	832	1.81	
26.98	344	1.79	
22.44	1056	1.42	
9.98	576	0.66	
8.76	10	0.58	3663
7.36	14	0.49	
6.84	28	0.45	3661
5.00	322	0.33	
3.34	200	0.22	
1.00	200	0.07	
0.66	10	0.04	
0.56	22	0.04	
0.34	22	0.02	
1507.38		100.00	

DATE: 23	$\begin{aligned} & 3 / 5 / 95 \\ & \text { start } \end{aligned}$	stop	gear type: bt no: duration					
						Long	E	1135
TIME :16:17:00 16:47:00 30 (min) Purpose code:								
LOG :3988.60 3990.00 2.40 Area code :								
SDEPTH: 452448 Validity code:								
Towing dir: 350° Wire out: 1350 m Speed: $30 \mathrm{kn}{ }^{\text {²0 }}$								
Sorted	d: 95 k		tal catch:	259.72	catc	Ch/HOUR:		9.44

spectes
Merluceius paradoxus, female
Traehyrincus scabrus
Helicolenus daeryopterus
Merluceius paradoxus, male
Deepwater fish mixture
Toderodes sagittatus
Vitreledonella fichardi
Nezumia sp.
Yarrella blackfordi
Trachipterus jacksonensis
Galeus polli
Aristeus varidens
Coelorinchus coelorhinc. polli
Bathynectes piperitus
Hoplostethus cadenati
Shrimps, small, non comn.
Epigonus centiculatus

Total

CATCH/HOUR		or тот.	SAMP
374.70	936	72.14	3666
55.50	426	10.68	
23.10	192	4.45	
13.00	54	3.47	3665
11.10		2.14	
9.56	18	1.84	
9.36	6	1.80	
5.70	204	1.10	
4.62	924	0.89	
4.38	6	0.84	
1.32	18	0.25	
0.60	72	0.12	
0.60	36	0.12	
0.30	24	0.06	
0.24	156	0.05	
0.18	60	0.03	
0.18	6	0.03	
519.44		100.01	

Date:23/	3/ $\begin{aligned} & \text { 5/95 } \\ & \text { start }\end{aligned}$	stop	GEAR TYPE: BT NO: duration			Project station:1092			
						POSI	SITIOR:Lat	s	1938
							Iong	E	1129
TIME :1	19:17:00	19:47:00	30	(min)	Purpose	de:			
Log : 4	: 4000.70	4002.00	1.30		Area code	:	: 3		
FDEPTH:	554	555			Gearcond.	ode:			
BDEPTH:	554	555			Validity	ode:			
	Towing d	r: 344*	Wire	out:165	0 m Spe	: 30	kn*10		

SPECTES	CATCH/HOUR		\% of tor.c	SAMP
		numbe		
Merlvecius paraioxus, female	134.20	172	53.91	3667
Trachyrincus scabrus	41.60	188	16.71	
Deania profundorum	16.56	4	6.65	
Deepwater fish mixture	13.28		5.33	
Hoplostethus cadenati	9.16	436	3.68	
Nezumia sp.	9.12	300	3.66	
rodarodes sagittatus	7.50	20	3.01	
Yarrella blackfordi	6.00	344	2.41	
Helicolenus dactylopterus	4.72	36	1.90	
gonostowatidas	3.00	440	1.21	
meianostomiatidas	1.00	60	0.40	
Ebinania costaecanarie	0.64	4	0.25	
Histioteuthis reversa	0.36	4	0.14	
PHOTICHTHYTDAE	0.28	40	0.11	
hYCTOPhIDAE	0.28	68	0.11	
Selachophidium guentheri	0.28	4	0.11	
Shrimps, small, nor comm.	0.24	112	0.10	
Thysanoteuthis rhombus	0.16	4	0.05	
Raja confundens	0.16	4	0.06	
Aphanopus sp.	0.12	4	0.05	
Astronesthidae	0.12	12	0.05	
Lamprogranmus exutus	0.08	4	0.03	
Melanocetus johnsor.i	0.04	4	0.02	
Lyconus pinnatus	0.04	4	0.02	
rotal	248.94		99.99	

Sorted: 100 Kg Total catch: 221.59 CATCH/HOUR: 443.18
species
serluccius paradoxus, female
Nezumia sp.
peania calcea
Phrybichthys wedli
Raja confuncens
Omuastrephes pteropus
selachophidium guentheri
Lophius vaillanti
ALEPOCEPMALIDAE
Hoplostethus cadenati
Trachyrincus scabrus
sQUALIDAE
Raja caudaspinosa
Chaceon maritae
Heterocarpus grimaldii
Todarodes sagittatus
Notacanthus sexspinis
Dicrolene intronigra
Bassanago albescens
Shrimps, small, nod comn.
Nephripsis atlan
Totaz

CATCH/HOUR			R OF TOT. C
weight	numbers	SAMP	
123.40	114	27.84	3668
99.20	3400	22.38	
38.72	48	8.74	
32.16	1424	7.26	
21.92	256	4.95	
20.80	32	4.69	
15.04	16	3.39	
12.80	175	2.89	
12.20	4	2.75	3669
12.00	212	2.71	
11.20	368	2.53	
10.48	384	2.36	
8.10	2	1.83	
7.36	1024	1.66	
4.96	32	1.12	
3.30	14	0.74	
3.04	178	0.69	
2.34	6	0.53	
1.44	26	0.32	
0.80	48	0.18	
0.80	26	0.18	
0.48	48	0.11	
0.32	26	6.07	
0.32	32	0.07	
443.18		99.99	

species	CATCH/HOUR		* of tot. C	SAMP
Merluccius paradoxus, female	276.00	340	47.45	3671
Todarodes sagittatus	83.80	220	24.43	
Trachyzineus scabrus	72.00	250	12.38	
Nezumia sp.	30.40	1580	5.23	
Hoplostethus cadenati	27.90	1060	4.80	
Lophius vaillanti	22.70	8	3.90	3673
Raja confundens	22.00	130	3.78	
Lophius vomerinus	17.80	4	3.06	
AuEFOCEPHALIDAE	7.20	190	1.24	
merluccius paradoxus, male	5.20	8	0.89	3672
Yarrella blackfordi	4.60	290	0.79	
Ebinania costaecanarie	2.40	30	0.41	
Selachophidium guentheri	2.00	40	0.34	
Mexluccius polli, female	1.84	2	0.32	3670
Galeus polis	1.40	10	0.24	
Shrimps, small, non comm.	1.20	580	0.21	
HYCTOPHIDAE	0.80	170	0.14	
Lamprogrammus exutus	0.70	30	0.12	
Chaceon maritae	0.62	2	0.11	
Stomias boa boa	0.50	40	0.09	
Melanocetus johnsoni	0.40	10	0.07	
Heterocarpus grimaldii	0.20	10	0.03	
rotal	581.66		100.01	

spectes	CATCB/HOUR		\% or tot. C	SAMP
Merluccius paradoxus, ferale	674.50	1044	62.65	3676
Trachyrincus scabrus	193.80	1564	18.00	
Nezumia sp.	58.90	1994	5.47	
Helicolenus dactylopterus	38.00	368	3.53	
Hoplostethus cadenati	30.90	2432	2.87	
Lophius vomerinus	22.90	12	2.13	3677
Deepwater fish mixture	18.88		1.75	
Raja confundens	10.20	70	0.95	
Lophius vaillanti	7.20	2	0.67	3678
Yarrella blackforsi	6.26	520	0.58	
Galeus polli	3.74	38	0.35	
Aristeus varidens	2.22	158	0.21	
Merluccius paradoxus, male	1.95	,	0.18	3675
Selachophidivm guentheri	1.90	38	0.18	
Epigonus denticulatus	1.52	126	0.14	
Laemonema laureysi	1.20	12	0.11	
todarodes sagittatus	0.56	6	0.05	
Ebinania costaecanarie	0.56	12	0.05	
Gadella imberbis	0.38	26	0.04	
Eenthodesmus temuis	0.38	,	0.04	
Shrimps, small, non comm.	0.26	94	0.02	
Thysanoteuthis rhombus	0.18	6	0.02	
stomias boa boa	0.18	12	0.02	
Total	1076.58		100.01	

Sorted: 31 kg Total cateh: 542.36 CATCH/HODR: 957.11

SPECIES
Merluccius capensis, female
Helicolenus dactylopterus
Lophius vomerinus
Merluccius capensis, male
Merluccius parados,
Merluccius paradoxus, female
Coelorinc small, non comm.
Squalus, smallops non comm.
Squalus megalops
Galeus polli.
Schedophilus huttoni
Todarodes sagittatus
Chiorophthalmus atianticus
Nezumia sp.
Bathynectes piperitus
Thachurus capensis
Merluccius paradoxus, male
Epigonus denticulatus
Bassanago albescens
Lampadena sp.
Total

CATCH/HOUR			
weight	numbers	OF TOT. C	SAMP
443.22	386	46.30	3679
210.18	5347	21.96	
68.74	56	7.18	3683
64.94	71	6.79	3681
37.50	141	3.92	3680
30.18	1271	3.15	
15.99		1.67	
14.72	21	1.54	
13.61	5	1.42	3684
13.45	53	1.41	
11.86	11	1.24	
7.09	11	0.74	
7.09	232	0.74	
5.29	328	0.55	
3.81	275	0.40	
3.81	11	0.40	
2.22	42	0.23	
1.39	9	0.15	3682
0.74	53	0.08	
0.53	11	0.05	
0.53	32	0.06	
0.32	11	0.03	
957.11		100.02	


```
DATE:24/5/95 GEAR TYPE: BT No: POSITION:LAT STATION:1089
```



```
DEPTH: \(\begin{array}{rrrr}230 & 228 & \text { Area code } & \text { Gearcond.code: }\end{array}\)
```



```
    Sorted: 107 Kg Total catch: 571.39 CATCH/HOUR: 1142.78
```



```
\(\begin{array}{llllll}\text { TIME } & \text { 07:52:00 } & 08: 12: 00 & 20 & \text { (min) Purpose code: } & 3 \\ \text { LOG } & : 4232.10 & 4233.10 & 1.00 & \end{array}\)
\(\begin{array}{lrrrr}\text { LOG } & : 4232.10 & 4233.10 & 1.00 & \text { Area code } \\ \text { FDEPTH: } & 276 & 277 & & \text { Gearcond. code: }\end{array}\)
\(\begin{array}{lrrr}\text { FDEPTH: } & 276 & 277 & \text { Grearcond. code: } \\ \text { BDEPTH: } & 276 & 277 & \text { validity code: }\end{array}\)
Towing dir: \(170^{\circ}\) wire out: 870 m Speed: \(30 \mathrm{kn} * 10\)
    Sorted: 170 kg Total catch: 1428.00 CATCH/HOTR: 4284.00
```


spectes

Dentex macrophthalmas Trachurus capensis
Merluecius capensis, female
Merluccius capensis, male
synagrops microlepis
Merluccius capensis. mal
Lophius vomerinus
Austroglossus microlepis
Sufflogobius bibarbatu
Merluccius capensis jurus capensis, juvenile
Total

CATCH/HOUR weight numbers		- of tot. C	SAMP
462.40	2548	40.46	3703
379.98	4212	33.25	3701
143.76	962	12.58	3699
65.24	544	5.71	3700
31.10	48	2.72	3706
30.90	4828	2.70	
17.74	380	2.55	
6.60	12	0.58	3707
3.48	6	0.30	3704
0.68	2	0.06	3705
0.38	38	0.03	
0.26	12	0.02	
0.26	168	0.02	3702
1142.78		99.98	

DATE: $24 /$	$\begin{aligned} & 4 / 5 / 95 \\ & \text { start } \end{aligned}$	stop	GEAR TYPE: BT No: POduration			PROSECT STATION: 1090		
						SITION:Lat	s	1859
						Iong	E	1157
TIME :	16:06:00	16:36:00		(min)	Purpose code:			
IOG :	:4111.30	4112.90	1.60		Area code :	:		
FDEPTH:	217	214			Gearcond.code:			
BDEPTH:	217	214			validity code:			
	Towing di	ir: 340°	wire	out: 74	40 m Speed: 32	kn*10		

SPECIEs
Merluccius capensis, female
Merluccius capensis, male
Trachurus capensis
Lophius vomerinus
Dentex macrophthalmus
Merluccius capensis
Synagrops microlepis
pterothrissus belloci
Sufflogobius bibarbatus
Merluccius polli
Chatrabus melanurus
Bregmaceros sp.

Total

CATCH/HOUR		$2 \mathrm{of} \mathrm{tot.c} \mathrm{sam}$	
weight	numbers		
44.00	322	49.04	3708
17.60	160	19.62	3709
16.90	230	18.84	3711
7.70	,	8.58	3713
1.70	10	1.89	3714
0.80	32	0.89	3710
0.46	86	0.51	
0.26	8	0.29	
0.16	34	0.18	
0.08	6	0.09	3712
0.05	2	0.07	
0.00	4		
89.72		200.00	

spectes	CATCH/HOUR		- of tot. C	SAMP
	weight	numbers		
Merluccius capensis, female	1228.14	1338	75.64	3715
Helicolenus dactylopterus	130.95	2181	8.07	
Merluccius capensis, male	100.23	123	6.17	3716
Nezumia sp.	46.02	2130	2.83	
Coelorinchus coelorhinc. polli	38.46	1815	2.37	
Laemonema laureysi	18.63	393	1.15	
Lophius vomerinus	14.76	18	0.91	3717
Ebinania costaecanarie	13.50	471	0.83	
Epigonus denticulatus	9.18	444	0.57	
Todarodes sagittatus	5.67	12	0.35	
Galeus polli	4.71	39	0.29	
Lophius vaillanti	4.20	3	0.26	3718
CRABS	3.78	69	0.23	
Malacocephalus laevis	3.24	27	0.20	
SHRIMPS	1.23	273	0.08	
chlorophthalmus atlanticus	0.96	27	0.06	
rotal	1623.66		100.01	

SPECIES	CATCH/HOUR		OF	
	weight	number		
Trachurus capensis	376.20	760	28.43	3723
Merluccius capensis, female	354.20	440	26.77	3720
Dentex macrophthalmus	234.30	5874	17.71	3722
Squalus megalops	114.18	496	8.63	
Pterothrissus belloci	80.20	1386	6.06	
Merluccius capensis, male	55.00	484	4.16	3724
Synagrops microlepis	51.16	7458	3.87	
Helicolenus dactylopterus	26.08	430	1.97	
Trigla lyra	13.86	66	1.05	
zenopsis conchifer	7.92	34	0.60	
Chlorophthalmus atlamticus	4.62	792	0.35	
Austroglossus pectoralis	2.98	66	0.23	3721
Merluccius polli	2.32	110	0.18	3719
Total	1323.02		100.01	

spectes
Merluccius capensis, female
Merluceius capensis, male
Trachurus capensis
Chlorophthalmus atlanticus
Dentex macrophthalmus
Squalus megalops
Helicolenus dactylopterus
Iophius vaillanti
Coelorinchus coelorhinc. polli
Laemonema laureysi
Iophius vomerinus
Galeus polli
BATHYLaGIDAE
Synagrops microlepis
Merluccius polli
Trigla lyra
Parapenaeus longirostris
Sepia sp.
Malacocephalus occidentalis
GALATHEIDAE
Total

CATCH/HOUR			
weight	numbers	OF TOT. C	SAMP
1963.65	4134	45.84	3727
735.36	2385	17.17	3726
315.30	1377	7.36	3730
303.60	7497	7.09	
254.40	6360	5.94	
211.80	582	4.94	
201.30	5085	4.70	
104.55	36	2.44	3729
67.83	2172	1.58	
29.16	636	0.68	
18.90	9	0.44	3728
18.54	264	0.43	
17.49	900	0.41	
16.95	1428	0.40	
8.22	237	0.19	3725
7.95	105	0.19	
4.23	264	0.10	
3.18	54	0.07	
1.05	51	0.02	
0.54	108	0.01	
4284.00		100.00	

Total
99.99

spectes

Merluccius capensis, female chlorophthalmus atlanticus Merluccius capensis, male Dentex macrophthalmus Trachurus capensis Helicolenus dactylopterus coelorinchus fasciatus synagrops
pterothrissus belloci
zeus faber
Squalus megalops
Lophius vaillanti
Malacocephalus laevis
Galeus polij
Galeus polli
tophius vom
Shrimps, small, non comm
Total

CATCH/HOUR OF TOT. C SAMP

CATCH/HOUR			OF TOT. C
weight	SAMP		
1941.40	4538	42.98	3735
788.80	23200	17.46	
654.50	2312	14.49	3736
280.20	1176	6.20	3741
245.66	1088	5.44	3738
192.66	4378	4.27	
104.00	4606	2.30	
102.46	8938	2.27	
74.40	316	1.65	
66.20	316	1.47	
21.20	44	0.47	
14.00	44	0.31	
7.10	2	0.16	3740
6.78	452	0.15	
4.58	186	0.10	3737
4.06	58	0.09	
4.00	6	0.09	3739
2.72	226	0.06	
1.80	404	0.04	
4516.52		100.00	

SPECTES

Merluccius capensis, female
Relicolenus dactylopterus
exiucelus capenis, male
squalus megalops
Merluccius paradoxus, femal
Laemonems laureysi
Lophius vomerinus
Coelorinchus fasciatus
Galeus polli
rodarodes sagittatus
frachurus capensis
Epigonus denticulatus
ophius vaillanti
Ebizania costaecanarie
Merluccius paradoxus, male MYCTODHIDAE
Nezumia sp.
Merluccius polli, female
foplostethus cadenati
totsi

CATCH/HOUR		\% of mot. c	SAMP
weight	numbers		
526.20	522	45.93	3742
130.20	1440	11.36	
87.40	130	7.63	3743
70.20	98	6.13	
66.78	29680	5.83	
64.20	236	5.60	3745
46.48	952	4.06	
45.80	20	4.00	3746
32.76	1106	2.86	
25.34	308	2.21	
15.60	32	1.36	
5.60	14	0.49	3749
4.90	70	0.43	
4.48	196	0.39	
3.74	4	0.33	3747
3.50	14	0.31	
3.38	12	0.30	3744
3.22	1260	0.28	
3.22	84	0.28	
1.44	2	0.13	3748
0.98	840	0.09	
0.28	14	0.02	
1245.70		100.02	

spectes
erluccius capensis. female
Mexicolecius dactylopterus
coelorinchus coelortinc. poll
Lophius vemerinus
Trigla lyra
chlorophthal piperitus
Trachurus capensis
Dentex macrophthalmus
raja confundens
Lophius vaillant
Galeus polii
aemonema laureysi
hrimps, small occidentalis
Total

CATCH/HOUR		of tot.	SAMP
weight	numbers		
1407.32	2296	46.57	3755
627.00	8250	20.75	
407.00	908	13.47	3754
147.40	6710	4.88	
121.50	134	4.02	3752
106.34	514	3.52	
88.00	1796	2.91	
26.04	624	0.86	
25.30	110	0.84	3751
19.06	74	0.63	3750
13.56	36	0.45	
12.70	8	0.42 .	3753
9.54	110	0.32	
5.86	256	0.19	
3.66	146	0.12	
1.84	844	0.06	
3022.12		100.01	

sorted: 102 kg Total catch: 604.79 CATCH/HOUR: 1170.56

SPECIES

Merluccius capensis, female
terluccius capensis, male
ynagrops mi.crolepis
felicolenus dactylopterus
raja straeleni
pterothrissus belloci Trigla lyra
Dentex macrophthaimus
Trachurus capensis
Chlorophthalmus atlanticus
thynectes piperitus
Lophius vomerinus Austroglossus microlepis

Total

CATCH/HOUR		3 or mot.	SAMP
weight	numbers		
495.29	1545	42.31	3765
256.65	894	21.93	3764
208.45	29590	17.81	
83.03	894	7.09	
53.42	58	4.56	
20.32	232	1.74	
16.72	58	1.43	
10.34	70	0.80	3768
9.06	58	0.77	3767
8.59	732	0.73	
4.30	395	0.37	
1.97	105	0.77	3769
1.47	2	0.13	3766
095	25	0.08	3770
1170.56		100.00	

SPECIES
Trachurus capensis
Pentex macrophthalmus
Merluccius capensis, female
Nerluccius capensis, male
Kathyectes piperitus
Total

DATE:26/			GEAR TYPE: BT No: duration		Prosect station: 1102			
	6/5/95	stop			POSI	Ition:Lat	s	1824
	start					zong	-	1145
TIME : 1	12:06:00	12:21:00	15 (min)	purpose	de:	3		
LOG : 4	:4355.80	4356.50	0.70	Area cod		3		
FDEPTH:	221	223		Gearcond	de:			
BDEPTH:	Towing dir: ${ }^{221}{ }^{223}$			validity	de:			
	Towing	165*	Wire out:	50 m Spe	30	kn*10		
Sorted	d: 60 K		tal catch:	833.37	catc	CH/HOUR:		33.48

spectes
Trachurus capensis
Dentex nacrophthalruy
Merluccilus capensis, female Merluccius capensis, male
austroglossus microlepis Total
catcy/hour or tot C savp

weight	numbers		
3040.80	25872	91.22	3779
168.00	1120	5.04	3780
94.80	404	2.84	3776
29.60	172	0.89	3777
0.28	4	0.01	3778

DRTE:26/5/95 GEAR TYPE: BT NO: POSTTION:LAT STAON:1103 $\begin{array}{lllllll} \\ \text { start stop duration } & \text { Iong } & \text { E } & 1139\end{array}$ $\begin{array}{llllll}\text { TINE } & : 14: 26: 00 & 14: 36: 00 & 10 \\ \text { LOG } & \text { (min) } & \text { Purpose code: } & 3 \\ \text { Area code } & 3\end{array}$
$\begin{array}{lrrrl}\text { LOG : } 4371.40 & 4371.80 & 0.40 & \text { Area coate } \\ \text { FDEPTH: } & 280 & 281 & & \text { Gearcond.code: } \\ \text { BDEPTH: } & 280 & 281 & & \text { Validity code: }\end{array}$

Sorted: 342 Kg Total catch: 394.90 CATCH/HOUR: 2369.40
species

	Merluccius capensis, female
	Merluccius capensis, male
	trachurus capensis
	MYCTOPHIDAE
	Dentex macrophthalmus
	Lophius vomerinus
	Syatgrops microlepis
	Austroglossus microlepis
	chlorophthalmus atlanticus
	galeus polli
	Raja leopardus
	trigla lyra
	CRABS
	Merluccius capensis
	SHRIMPS
	Coelorinchus coelorhinc. polii
	Scopelosaurus meadi

Total

CATCH	tR	* OF TOT. C	SAMP
	numbers		
1281.42	1548	54.08	3786
324.78	1878	13.71	
318.60	720	13.45	3787
96.36	366	4.07	3795
92.16	35310	3.89	
88.55	342	3.74	3784
52.80	54	2.23	3783
51.54	4848	2.18	
27.90	54	1.18	3781
15.95	1134	0.67	
21.59	234	0.49	
3.66	6	0.15	
2.64	12	0.11	
0.42	132	0.02	
0.36	18	0.02	3782
0.36	144	0.02	
0.18	12	0.01	
0.12	12	0.01	
2369.40		100.63	

spectes
Merluccius capensia
Dentex macrophthalmus
Pterothrissus belioci
Chlorophthalmus atlanticus
Trigla lyra
Lophius vomerinus
synagrops microlepis
coelorinchus coelorhinc. polli
Trachurus capensis
Austroglossus microlepis
Galeus polia
coelorinchus fasciatus
Bathynectes piperitus
myctophtidas
Total

Annex IV Instruments and fishing gear used

Acoustic instruments

The SIMRAD EK500/38 KHZ scientific sounder was used during the survey for estimation of fish density. The EK500 has a built- in digital echo integrator, but the Bergen Echo Integrator system (BEI) was used throughout the survey. The details of the instrument settings are as follows:

Transceiver settings:

Bandwidth	Wide $(3.8 \mathrm{KHz})$
Pulse length	Medium $(1 \mathrm{~ms})$
Max Power	2000 Watt
Sv Transducer gain	27.8 dB
Ts Transducer gain	28.1 dB

Printer settings:

Range	$0-100$ or $0-250 \mathrm{~m}$
TVG	$20 \log \mathrm{R}$
TS Colour min	-50 dB
Sv Colour min	-64 dB

An ES38B with a $6.8^{\circ}-3 \mathrm{~dB}$ beamwith transducer was used for integration.

A calibration experiment using a standard copper sphere, performed in Baia dos Tigres 23/2 1994 gave the following results: Sv Transducer gain 27.8 dB , Ts Transducer gain 28.1 dB .

Glossary:

Sv Transducer gain: Peak transducer gain assumed during computation of volume backscattering strength.

Ts Transducer gain: Peak transducer gain assumed during computation of target strength.

Ts Colour min: Lower limit of colour scale relative to target strength.

Sv Colour min: Lower limit of colour scale relative to volume back scattering.

Hydrography

Conductivity, temperature, density and oxygen were sampled regularly at CTD stations with a Seabird CTD-sonde. The salinity was calculated by a computer.

Fishing gear

The vessel has two different sized 'Åkrahamn' pelagic trawls and one Gisund super bottom trawl. Only the bottom trawl was used during the survey.

The bottom trawl has a headline of 31 m , footrope 47 m and 20 mm meshsize in the codend with an innernet of 10 mm meshsize. The estimated headline height is 5 m and distance between the wings during towing about 18 m . The trawl is equipped with a $12^{\prime \prime}$ rubber bobbins gear and $6 \mathrm{~m}^{2}$, 1500 kg 'Egersund' combi-doors. The sweeps are 40 m long.

The following drawings show the size of these trawls.

Annex V Various attempts to combine trawl estimates and acoustic estimates of pelagic hake.

A: Bottom trawl estimate plus acoustic estimate of pelagic hake (BT + ACP)

This estimate is the standard hake estimate presented in all surveys. The semi random trawl stations are post-stratified into 3-4 density levels following bottom depth and judged distribution patterns. Hake more than 6 m off bottom during trawling are assessed by acoustic methods and are added to the trawl density per station using the target strength relationship TS=20 Logl-68. The mean density and area for each subarea is calculated and summed into regional estimates by the Southern, Central and Northern Regions. The length frequency distributions (LFQ) from each trawl station are pooled together by strata using CPUE of the species at each station as weighting factor. The LFQ's are further grouped together into regional estimates, using the biomass in each stratum as weighting factor, obtaining a regional representative length distribution. These length distributions are applied on the biomass per region to get total estimates in number and weight for each cm length group. The conversion from total biomass to biomass per length group can be explained in six simple steps:

- The length distribution is normalized to 10000 fish.
- The weight of this 'sample' is calculated by using a length/weight relationship obtained during the survey or more easily by applying a condition factor of 0.67 . The average condition factor varies between 0.66 and 0.68 for all previous surveys and applying the value 0.67 gives only minor deviations from the empirical length/weight table.
- The total biomass figure is divided by the weight of the 10000 fish sample, obtaining a raising factor for the sample.
- The raising factor is multiplied with the length frequency distribution and the product will be the length distribution in absolute numbers.
- The number in each length class is transferred into weight using the length/weight key or the condition factor.
- The absolute distributions of numbers and biomass are split by the 35 cm group into 'fishable' and 'non-fishable' biomass.

Critique Common critical arguments against the method are:

- The effective trawling width and height of the trawl is not accurately known. Applying a retention factor of 1.0 for the area between the wings of the trawl is likely overestimating the big size fish, as preliminary studies indicate that this fish
is herded into the trawl path by the bridles. This subject is under close investigation both in Norway and Namibia and length dependent correction factors will likely be applied in the near future.
- As a vessel passes over a fish distribution the fish tends to dive towards the bottom before the trawl passes. This effect is depth dependent. Under such circumstances one runs the risk of counting the fish twice, once in the acoustic layer and later as catch in the trawl. Several experiments are carried out to put more light on this effect. This effect tends to overestimate the biomass in the survey area.
- The post-stratification technique has its followers and sceptics. Post-stratification involves a subjective element avoided by many. We prefer the method as it accounts for natural fish aggregations forming clusters with low variance. The method has proven to be quite consistent and comparisons with automatic interpolation methods (in preparation) shows remarkable similarity both in distribution pattern detected and in the abundance estimates calculated. These were typically within 10% deviation.

B: Bottom trawl estimate (BT): This is a pure bottom trawl estimate, stratified by depth zones and degrees of latitude. The average catch rate of hake from the semi-random trawl stations, computed as $[\mathrm{kg} / \mathrm{h}]$, is converted to density [tonnes $/ \mathrm{nm}^{2}$] and multiplied with the strata area. Stratification was done in 100 m depth bins and within element areas, 1° in latitude, limited by the 100 m and 700 m depth contours.

Critique:

This estimate is a minimum estimate of the hake stocks (assuming that the effective swept width of the trawl is correct), as hake in the pelagic region not is accounted for. Furthermore as the stations are automatically applied to the strata, one or a few stations can be representative for big areas, making variance estimation impossible.

C: Corrected bottom trawl estimate (BTC).

The acoustic system is used to compute the vertical availability at each trawl station, but also as an average in the stratum. Vertical availability is measured as the area backscattering coefficient $\left(\mathrm{s}_{\mathrm{AB}}\right)$ of hake registered in the 10 m bottom layer, divided by the total hake s_{AT}, or the sum of bottom and off bottom acoustic density:

$$
q=\frac{s_{A B}}{s_{A T}}
$$

q is now an index for how much of the hake is available to the bottom trawl, taking values between 0 and 1 . If all fish is registered acoustically within the 10 m bottom channel, $q=1$, and if all the fish is registered off bottom, above 10 meters off bottom, $q=0$.

The average availability is computed for each depth strata, and the average density from the bottom trawl survey, corrected for availability.

$$
b t c_{i, j}=\frac{\langle b t\rangle}{\langle q\rangle}
$$

Critique:

If the fish is registered extremely close to the bottom, the corrected estimate will be the same as the bottom trawl estimate. However if the fish is registered both as off bottom, and at the same time very close to the bottom, the acoustic estimate of bottom density will be underestimated, and hence, the availability underestimated, causing too large corrections.

A parallel assumption in this method is that when fish is registered as available to the trawl, comparable fish density estimates should be obtained by acoustics and trawling. So far, on hake, this is not the case, the bottom trawl estimates of density being significantly higher than the acoustic density, when compared. The cause of this discrepancy is so far not fully understood, but three alternative solutions may be obvious:

1. The effective swept width of the trawl is larger than assumed, 18 m .
2. The effective fishing height of the trawl is significantly higher than 6 m , caused by the fish avoiding the vessel vertically during trawling and compressing within the trawl height zone.
3. Large quantities of fish is situated within the acoustic deadzone, and this density is non-correlated with the density in the lowest 1 m next to the bottom.

D: Bottom trawl estimate plus acoustic density estimate of the hake are added, (BT + ACP). All acoustic data from the pelagic region within the strata are used to compute the acoustic estimate of the off bottom hake. The strata are the same as applied in method B. The root mean
square length of all hake within the strata are used to determine the average target strength and the average backscattering cross section using a length target strength to equation for hake equal:

$$
T S=20 \log L-68[d B]
$$

after the method described in Cruise Rep No. 2/1994, part 2.

The splitting of the acoustic density estimate for M. capensis and M. paradoxus were made separately for each stratum, according to relative catch rates at trawl stations.

Critique:

This estimate should in principle nearly fit the standard estimate method applied, where acoustic density only at stations were used for the computation of density of off bottom hake. Because of the high number of strata involved with few stations in each, method D will however be subject to a higher variance.

A critical assumption in this estimate is that the fish does not move vertically during the trawling operation. General assumptions as regards the bottom trawl survey method is of cause also valid.

E: Acoustic total estimate (AC)

This is a pure acoustic estimate, covering both the pelagic and bottom channels, using the same stratification system as earlier mentioned.

Critique:

Hake in deep water ($250-500 \mathrm{~m}$) may to a large extent be measured by this method, with relatively small deadzone problems. The shallower part is severely underestimated by this method, as these were covered mainly during daytime. In daytime the fish, mainly the younger ones were distributed extremely close to the seabed, and no deadzone correction could be applied. Only marginal improvements of their detection was achieved when running the 120 kHz system at 0.1 ms pulse length. If the shallow areas were surveyed during nighttime, a significant improvement in this estimate may be achieved, but then at the cost of the bottom trawl estimate.

The following tables are showing the results from the computations grouped by latitude and depth zones. These data will be subject for a later thorough statistical analysis.

Biomass estimates on Cape hake (Merluccius capensis) by degrees latitude in the central region. Tonnes.							
Area	Estimate	101-200 m	$201-300 \mathrm{~m}$	$301-400 \mathrm{~m}$	$401-500 \mathrm{~m}$	$>500 \mathrm{~m}$	Total
$21^{\circ}-22^{\circ}$	BT	4463	2508	1378	0	0	8349
	BTC	4463	3135	2600	0	0	10199
	BT+ACP	4463	2573	2443	0	0	9479
	ACT	131	311	2066	0	0	2508
$22^{\circ}-23^{\circ}$	BT	3415	15812	3893	18	0	23137
	BTC	3415	16821	5898	51	0	26185
	BT+ACP	3415	15990	5406	27	0	24838
	ACT	80	1178	2382	14	0	3654
$23^{\circ}-24^{\circ}$	BT	17260	10971	6498	0	14	34743
	BTC	17260	15673	10829	0	17	43780
	BT+ACP	17260	11771	7850	0	17	36898
	ACT	261	2312	2609	0	8	5190
$24^{\circ}-25^{\circ}$	BT	0	14220	4586	0	0	53549
	BTC	0	26830	10666	0	0	81276
	BT+ACP	614	16052	6159	0	0	57568
	ACT	2246	3352	2710	0	0	8309
$21^{\circ}-25^{\circ}$	BT	25138	43511	16355	18	14	85036
	BTC	25138	62459	29.993	51	17	117660
	BT+ACP	25752	46386	21858	27	17	94040
	ACT	2718	7153	9767	14	8	19660
	BT+ACP*						104515

Biomass estimates on Cape hake (Merluccius capensis) by degrees latitude in the southern region. Tonnes.							
Area	Estimate	$100-200 \mathrm{~m}$	$200-300 \mathrm{~m}$	$300-400 \mathrm{~m}$	$400-500 \mathrm{~m}$	$>500 \mathrm{~m}$	Total
$25^{\circ}-26^{\circ}$	BT	10888	33781	15916	455	33	61073
	BTC	13958	39742	37015	1057	67	91839
	BT+ACP	11150	34288	17482	455	44	63419
	ACT	1141	2445	2337	0	18	5941
$26^{\circ}-27^{\circ}$	BT	31044	27552	9924	0	0	68520
	BTC	37859	47503	31014	0	0	116106
	BT+ACP	31669	29250	13521	0	0	74440
	ACT	3651	3714	4699	0	0	12064
$27^{\circ}-28^{\circ}$	BT	17002	2833	20048	0	0	39883
	BTC	27422	3777	26731	0	0	57929
	BT+ACP	18080	2902	22483	0	0	43465
	ACT	2373	145	4299	0	0	6817
$28^{\circ}-29^{\circ} 30^{\prime}$	BT	24904	1856	54	0	0	26814
	BTC	27367	2263	123	0	0	29754
	BT+ACP	25270	2001	113	0	0	27384
	ACT	2073	248	75	0	0	2396
$25^{\circ}-29^{\circ} 30^{\prime}$	BT	83838	66022	45942	455	33	196290
	BTC	106606	93285	94883	1057	67	295897
	BT+ACP	86169	68441	53599	455	44	208708
	ACT	9238	6552	11410	0	18	27218
	BT+ACP*						145317

Biomass estimates on deep water hake (Merluccius paradoxus) by degrees latitude in the central region.
Tonnes.

Area	Estimate	$101-200 \mathrm{~m}$	$201-300 \mathrm{~m}$	$301-400 \mathrm{~m}$	$401-500 \mathrm{~m}$	$>500 \mathrm{~m}$	Total
$21^{\circ}-22^{\circ}$	BT	0	0	1013	1351	1365	3728
	BTC	0	0	1911	3215	2132	7729
	BT+ACP	0	0	1795	2156	2036	5987
	ACT	0	0	1518	1383	1495	4396
$22^{\circ}-23^{\circ}$	BT	0	3705	1148	1381	3481	9715
	BTC	0	3942	1739	3947	7911	17538
	BT+ACP	0	3747	1594	2059	4241	11641
	ACT	0	276	702	1047	1295	3320
$23^{\circ}-24^{\circ}$	BT	0	0	2443	1469	1802	5714
	BTC	0	0	4071	1959	2310	8340
	BT+ACP	0	0	2951	1847	2201	6999
	ACT	0	0	981	971	1041	2993
$24^{\circ}-25^{\circ}$	BT	0	52	6401	3718	3881	14051
	BTC	0	98	14886	7436	8820	31239
	BT+ACP	0	59	8597	5827	4936	19418
	ACT	0	12	3783	3882	1918	9595
$21^{\circ}-25^{\circ}$	BT	0	3757	11005	7919	10529	33208
	BTC	0	4040	22607	16557	21173	64377
	BT+ACP	0	3806	14937	11889	13414	44044
	ACT	0	288	6984	7283	5749	20304
	BT+ACP*						41729

Biomass estimates on deep water hake (Merluccius paradoxus) by degrees latitude in the southern region.
Tonnes.

Area	Estimate	$100-200 \mathrm{~m}$	$200-300 \mathrm{~m}$	$300-400 \mathrm{~m}$	$400-500 \mathrm{~m}$	$>500 \mathrm{~m}$	Total
$25^{\circ}-26^{\circ}$	BT	0	0	10829	4868	6830	22528
	BTC	0	0	25184	11321	13661	50166
	BT+ACP	0	0	11894	5494	9007	26396
	ACT	0	0	1590	1074	3580	6244
$26^{\circ}-27^{\circ}$	BT	0	0	24616	6134	13926	44675
	BTC	0	0	76926	9736	17627	104289
	BT+ACP	0	0	33538	7694	14763	55994
	ACT	0	0	11655	3147	2218	17020
$27^{\circ}-28^{\circ}$	BT	429	16225	5460	3030	4190	29333
	BTC	692	21633	7279	3030	4190	36824
	BT+ACP	458	16619	6123	3030	4190	30419
	ACT	64	831	1171	1112	763	3940
$28^{\circ}-29^{\circ} 30^{\prime}$	BT	17760	4270	4444	754	625	27854
	BTC	19517	5.208	10101	1371	679	36876
	BT+ACP	18021	4607	9263	1671	1927	35489
	ACT	1478	574	6133	1558	2020	11763
$25^{\circ}-29^{\circ} 30^{\circ}$	BT	18189	20495	45349	14786	25571	124390
	BTC	20209	26841	119490	25548	36157	228155
	BT+ACP	18479	21226	60818	17889	29887	148299
	ACT	1542	1405	20549	6891	8581	38968
	BT+ACP*						137523

Annex VI Differences in catchability of demersal fish due to the presence of a tickler chain
 (by Gabriella Bianchi)

In the course of the present survey a tickler chain was fitted to the footrope of the bottom trawl, every second haul. The presence of the chain is believed to increase the catchability of sedentary fish or fish living very close to the bottom and of bottom invertebrates.

Statistical tests were performed to check the effect of the chain on two important components of the catches in the bottom trawl survey, i.e. the hakes and the monk.

1. Hakes

A total of 168 successful trawl stations were sampled during this survey and were used to perform this analysis. The catch rates of both species (Merluccius capensis and M. paradoxus) were combined for each trawl were they occurred jointly. Table 1 shows the summary statistics for the variables used in the analysis.

Table 1.						
stations without and with chain $(\mathrm{nch}<250, \mathrm{ch}<250)$ and in						
deep stations without and with chain $(\mathrm{nch}>250, \mathrm{ch}>250)$.						
Variable	\mathbf{N}	Mean	Med.	SD	Min.	Max.
nch <250	27	300.0	228.0	242.3	0.9	834.0
ch <250	21	341.0	132.0	474.0	0.0	1920.0
nch >250	57	444.3	288.0	462.6	30.0	2487.0
ch >250	63	588.2	285.0	736.0	12.0	3492.0

Figures 1 and 2 show the histograms of the catch rates $(\mathrm{kg} / \mathrm{h})$ for stations shallower than 250 m and stations deeper than 250 m , respectively.

Fig. 1 Histogram of catch rates $(\mathrm{kg} / \mathrm{h})$ for stations $<250 \mathrm{~m}$; a) without chain, b) with chain

Fig. 2 Histogram of catch rates (kg / h) for stations $>250 \mathrm{~m}$; a) without chain, b) with chain
The distribution of the cath rates is highly skewed. A log transformation was attempted, but this resulted in skewed distributions that could not be considered as approaching normality. For this reason it was decided to utilize the Mann-Whitney rank-sum test. This is a non-parametric procedure for comparing two populations that tests the null hypothesis of equality of the medians.

In addition, a bootstrapping technique was utilized to test the equality of the means of the catch rates with chains and without chains, for each depth interval. Given two samples \mathbf{z} and \mathbf{y} from possibly different probability distributions the difference between their means is $t(x)=z-y$. By the bootstrapping techniques we seek an achieved significance level ASL $=\operatorname{Prob}_{\mathrm{Ho}}\left\{\mathrm{t}\left(\mathbf{x}^{*}\right) \geq \mathrm{t}(\mathbf{x})\right\}$, where $t\left(x^{*}\right)$ is the random variable and $t(x)$ is fixed at the observed value.

The algorithm used includes sampling the combined samples (i.e. the set of stations with chains and the set without chain), with replacement, to produce 1000 samples of size $n+m$ (with n and m the size of the two station sets to be compared). Each of the bootstrapped samples were split again into two samples of the same size as the original ones and the difference between their means calculated. In this way, a distribution of the difference between the means was obtained, assuming that the two samples available came from the same population. The achieved significance level was calculated as follows:
$\mathrm{ASL}_{\text {boot }}=\#\left\{\mathrm{t}\left(\mathrm{x}^{* b}\right) \geq \mathrm{t}_{\text {obs }}\right\} / \mathrm{B} \quad$ where:
$\mathrm{ASL}_{\text {boot }}$: Achieved significance level after bootstrapping
$\mathrm{t}\left(\mathrm{x}^{* b}\right)$: the difference in the means of the bootstrapped samples
$\mathrm{t}_{\text {obs }} \quad$: the observed differences between the means
B : the number of samples obtained by the bootstrapping
In other words, we try to find the probability that the random variable produced through the bootstrapping is higher than our observed value. If we set a significance level of 0.05 , any probability value below this would lead to the rejection of the null hypothesis of equality of the means.

An alternative bootstrapping algorithm consists in producing a number of new samples (1000) by random sampling with replacement of the original samples. The 95% confidence limits of the catch rate estimates can be obtained by taking the 2.5% and 97.5% percentiles of the distribution obtained by the bootstrapping procedure. A comparison of the confidence limits of the two distributions allows
to draw conclusions on the equality of the means. See Efron \& Tibshirani for more information on bootstrapping techniques.

1.1 Results from the Mann-Whitney test

The point estimate for the difference in the medians of nch<250 and ch<250 was $63 \mathrm{~kg} / \mathrm{h}$. The test resulted significant at 0.37 , i.e. the null hypothesis cannot be rejected at $\alpha=0.05$.

As regards the deep stations, the point estimate of the difference between the medians of nch >250 and $\mathrm{ch}>250$ was 6 and the test resulted significant at 0.8975 . Again, the null hypothesis of equality cannot be rejected at $\alpha=0.05$.

From the above test, we can draw the conclusion that the catch rates of the hakes in hauls with and without tickler chains were not significantly different.

1.3 Results from the bootstrapping procedure

The bootstrapping algorithm presented above gave the following results :
shallow waters $(<250 \mathrm{~m}) \quad: \mathrm{ASL}_{\text {boot }}=0.34$
deep waters $(>250 \mathrm{~m}) \quad: \mathrm{ASL}_{\text {boot }}=0.20$
Also according to this test the null hypothesis of equality cannot be rejected at $\alpha=0.05$.
Figures 3 a and b show the distributions of the means obtained by bootstrapping, for the shallow and deep water hauls, respectively.

Fig 3. Frequency distributions of means (kg / h) for the hakes a) shallow-water stations and b) deep-water stations ----- without chain, -- - with chain

These figures also show the positions of the 2.5 and 97.5 percentiles. The distributions widely overlap in both cases. As regards the stations $>250 \mathrm{~m}$, the distribution of the means with chain is shifted to the right, but the confidence limits overlap also if the confidence level is reduced to 90%.

All the above tests lead to the conclusion of no difference between the mean catch rate when using chains as compared to hauls without chain. There is however still some uncertainty on the results of the test due to the sampling strategy, i.e. the sampling stations were in different areas. This leads to an additional element of increased variance between the two groups, which may partly cover existing true differences. The test would have resulted more reliable if based on pair trawling.

2. Monks

Two species are caught in Namibian waters, Lophius vomerinus and L. vaillanti. The two species were analyzed jointly because of their anatomical and behavioral similarities.

Two tests were applied in this case, i.e the Mann-Whitney and the bootstrapping based on comparison of the confidence limits of distribution of the means (for a description of the methods see under the section on hakes). The depth stratification was however abandoned because of the limited number of stations with non 0 catches in the shallower stratum.

Table 2 presents the summary statistics for the hauls without and with chain.

Variable	N	Mean	Med.	SD	Min.	Max.
nch	84	6.0	0.9	11.6	0.0	61.0
ch	86	19.0	6.6	33.3	0.0	170.5

Figure 4, a and b, show the histrograms of the catch rates without chain and with chain, respectively.

Fig. 4 Histograms of catch rates for the monks $(\mathrm{kg} / \mathrm{h})$; a) without chain, b) with chain

2.1 Results from the mann-Whitney test

The point estimates for the difference in the medians was $2.6 \mathrm{~kg} / \mathrm{h}$. The test resulted significant at 0.0003 indicating that we can reject the null hypothesis of equality of the medians at $\alpha=0.05$.

2.2 Results from the bootstrapping procedure

Figure 5 shows the distribution of the means resulted form the bootstrapping.

Fig 5. Frequency distributions of means (kg / h) for the monks
----- without chain, -- - with chain
The positions of the 2.5 and 97.5 percentiles are also shown. The difference between the two groups is quite clear. The presence of the chain, as expected, improves the catchability of the monks. When analyzing time series of survey results of monks and sedentary species in general, the catch rates of surveys without the chain should be raised by a suitable factor. This should be calculated through a new experiment with paired trawling.

References

Efron, B. \& Tibshirani, R.J. (1993). An introduction to the bootstrap. Chapman \& Hall, New York, 436 p.

SURVEYS OF THE FISH RESOURCES OF NAMIBIA

Preliminary Report: Cruise No 3/95

Part II

Survey of the offshore and inshore horse mackerel 1-22 June 1995

by
J. Hamre
Institute of Marine Research
P. O. Box 1870 Nordnes N-5024 Bergen, Norway

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1
1.1 Objectives 1
1.2 Participation 2
1.3 Survey area 2
1.4 Narrative 2
1.5 Survey effort 3
CHAPTER 2 METHODS 6
2.1 Hydrographic sampling 6
2.2 Plankton sampling 6
2.3 Acoustic sampling 6
2.4 Biological sampling 8
2.4.1 Trawl data and size composition 8
2.4.2 Biological data 8
CHAPTER 3 RESULTS 10
3.1 Hydrography and plankton 10
3.2 Fish distribution 11
3.2.1 Easter Point to Ambrose Bay 11
3.2.2 Ambrose Bay to Cunene River 12
3.2.3 Cunene River to Tombua 12
3.3 Abundance 17
3.4 Biological analysis of fish 18
3.4.1 Length-frequency 18
3.4.2 Length-weight 18
3.4.3 Reproductive status 18
3.4.4 Condition 18
CHAPTER 4 CONCLUDING REMARKS 19

ANNEXES

I Instruments and fishing gear
II Hydrographic and plankton profiles
III Summary of fishing stations
IV Records of fishing stations
V Length-frequencies of different areas
VI Length-weight relations
VII Distribution of near surface environmental parameters
VIII Food particle size distribution
IX Biomass and numbers
X Reproductive status
XI Fish condition factor

CHAPTER 1 INTRODUCTION

1.1 OBJECTIVES

The main objective of this survey was to carry out an acoustic investigation of the adult horse mackerel (from age $2+$) in order to determine its present abundance and distribution. More specific objectives can be summed up as follows:

- To estimate acoustically the abundance and size composition of the offshore adult horse mackerel (Trachurus capensis).
- To determine the biological condition of the horse mackerel with regards to: length, weight, reproductive stage and condition factor.
- To conduct an intercalibration of the scientific acoustical systems of the RV 'Dr. Fridtjof Nansen' and RV 'Welwitschia'.
- To conduct a sphere calibration at Baía dos Tigres.
- To collect data on basic oceanographic parameters, namely dissolved oxygen, temperature and salinity, for correlation with pelagic fish distribution and densities.
- To obtain data on the distribution of phytoplanktonic food in relation to hydrography and planktivorous fish.
- To obtain data on vertical distribution of phytoplankton in order to assess the applicability of the satellite sea surface biomass estimation programme (SEAWIFS).

The acoustic data of the inshore juvenile horse mackerel, surveyed by the RV 'Welwitschia', would be combined with the acoustic data set of the offshore adult horse mackerel ($2+$) surveyed by the RV 'Dr. Fridtjof Nansen'.

1.2 PARTICIPATION

The scientific staff from the National Marine Information and Research Centre, Swakopmund, Namibia on the RV 'Dr. Fridtjof Nansen' were:

Ekkehard Klingelhoeffer, Jan Botha, Anke Lehmensiek, Anja Risser, Deon Louw, Michael Evenson, Jeremia Titus and Sakeus Nakambunda.

From Angola:

No representative from Angola was able to participate in this survey.

The scientific staff from the Institute of Marine Research, Bergen, Norway, were:
Johannes Hamre (Cruise Leader), Svein Floen, Terje Haugland and Erling Molvær.

1.3 SURVEY AREA

The limits of the survey area were determined from the previous data of pelagic fish distribution i.e. the area from Easter Point ($25^{\circ} 00^{\prime} \mathrm{S}$) into Angolan waters to the west of Tombua ($16^{\circ} 00^{\circ} \mathrm{S}$) was surveyed. The survey followed a systematic parallel grid of 20 nm apart from $25^{\circ} 00^{\prime}$ to $19^{\circ} 00^{\prime} \mathrm{S}$ and 15 nm apart from $19^{\circ} 00^{\prime}$ to $16^{\circ} 00^{\prime} \mathrm{S}$, due to the greater abundance of horse mackerel in the region north of $19^{\circ} 00^{\prime} \mathrm{S}$. On the full degree lines the inshore limit was 2 nm from the shore to approximately 500 m bottom depth (up to 100 nm off-shore). The other transects covered the area between the 100 m and 500 m isobaths.

To allow comparison with previous pelagic fish surveys, the region was divided into three areas:

$$
\begin{array}{ll}
25^{\circ} 00^{\prime} \text { to } 21^{\circ} 00^{\prime} \mathrm{S} & \text { Easter Point to Ambrose Bay } \\
21^{\circ} 00^{\prime} \text { to } 17^{\circ} 15^{\prime} \mathrm{S} & \text { Ambrose Bay to Cunene River } \\
17^{\circ} 15^{\prime} \text { to } 16^{\circ} 00^{\prime} \mathrm{S} & \text { Cunene River to Tombua }
\end{array}
$$

The course tracks with the trawling and CTD stations for the three areas are shown in Figures 1a-b, respectively.

1.4 NARRATIVE

The RV 'Dr. Fridtjof Nansen' left Walvis Bay at 10 h 00 on 31 May and steamed southward to $25^{\circ} 00^{\prime}$ S, Easter Point, where the actual survey work started at 04 h 00 on 1 June 1995. The survey followed a systematic parallel grid of 20 nm apart from $25^{\circ} 00^{\prime} \mathrm{S}-19^{\circ} 00^{\prime} \mathrm{S}$ and 15 nm apart from $19^{\circ} 00^{\prime}-16^{\circ} 00^{\prime} \mathrm{S}$ between 100 and 500 m bottom depth.

The RV 'Dr. Fridtjof Nansen' met with the RV 'Welwitschia' on 15 June at Baía dos Tigres. The 18,38 and 120 kHz echo-sounders and the split-beam sonde were calibrated using standard
targets in Baía dos Tigres on 15 June. (Annex I). An intercalibration exercise was conducted with the RV 'Welwitschia' on 17 June off the Cunene River and on the 19-20 June offshore between $21^{\circ} 30^{\prime}$ and $23^{\circ} 00^{\prime} \mathrm{S}$.

The RV 'Dr. Fridtjof Nansen' arrived in Walvis Bay on 22 June at 08 h 00 . A total of 4078 nautical miles were steamed.

Since the present project began in 1990, this survey was the first survey dedicated entirely to the mid-water adult horse mackerel stock, from Easter Point to Tombua in southern Angola. Inshore surveys were however conducted to assist the RV 'Welwitschia' covering the pelagic fish type 1 and pelagic fish type 2. The data collected and results obtained from this survey are reported in the RV 'Welwitschia' cruise report.

1.5 SURVEY EFFORT

The course track with the trawl stations and hydrographic profiles is presented in Figures 1a-b.

The number of hauls by area and number of CTD stations were:

	Bottom trawls	Mid-water trawls	Total	CTD
$25^{\circ} 00^{\prime}-21^{\circ} 15^{\prime} \mathrm{S}$	2	19	21	33
$21^{\circ} 15^{\prime}-17^{\circ} 15^{\prime} \mathrm{S}$	9	32	41	23
$17^{\circ} 15^{\prime}-16^{\circ} 00^{\prime} \mathrm{S}$	4	5	9	14
Total	15	56	71	70

Figure 1a Course track and fishing stations, Easter Point to Ambrose Bay.

Figure $1 b$ Course track and fishing stations, Ambrose Bay to Tombua.

CHAPTER 2 METHODS

2.1 HYDROGRAPHIC SAMPLING

A total of 65 hydrographic profiles were worked along 10 hydrographic sections from 25° to $16^{\circ} \mathrm{S}$ (Annex II) using a Seabird 911+CTD probe, also carrying a sensor for dissolved oxygen. At each degree latitude CTD stations were carried out at the following distances from the coast: $2,5,10$, $20,30,50$ and in some instances a further station at 70 nm . At each station, water samples were taken near the surface and at the bottom. In order to calibrate the sensor, these were analysed for dissolved oxygen using the Winkler method. Earlier calibration factors between sensor and Winkler seemed to fit well with the measurements made.

An additional three CTD stations were taken at $19^{\circ} 40$ 'S and two at Baía dos Tigres and one off Palgrave Point where a red tide occurred.

2.2 PLANKTON SAMPLING

Rosette water bottle samples were obtained at all the CTD stations, and bucket samples at the trawl stations and at 38 additional sites. A Sea Tech in situ fluorometer attached to the CTD, supplied depth profiles of algal fluorescence. The water samples were taken for calibration of the in situ fluorescence sensor, and for particle size and biomass analysis.

Chlorophyll was measured with a Turner 10-AU fluorometer, after extraction in acetone. 102 gut fluorescence analyses were done on especially pelagic fish. Particle size analysis of water samples was done with a Coulter Multisizer II, weather permitting.

Light penetration profiles were obtained at the CTD stations (with a Biosperical P.A.R. sensor) for information on the eutrophic depth.

2.3 ACOUSTIC SAMPLING

A description of the acoustic instruments and their standard settings are given in Annex I. Included is a description of the fishing gear used and the results of the sphere calibration performed at Baía dos Tigres 15 June 1995. The results of the intercalibration of the scientific
acoustical systems of the RV 'Dr. Fridtjof Nansen' and RV 'Welwitschia' and other experiments conducted at Baía dos Tigres will appear in the RV 'Welwitschia' cruise report.

The catches were sampled for species composition, by weight and numbers (Annex III and IV). Biological samples, i.e. length and weight compositions were taken for the target species. The acoustic echo-integration system provided measurements of fish area densities of 1 nm , averaged over 5 nm distance in offshore water. An output over one nautical mile was used when surveying inshore water from 50 to 15 m bottom depth.

The integrator data from fish targets were allocated to the following groups on the basis of trawl sampling and acoustic character, as recognized from the echo recordings:

Horse mackerel (2+)
Pelagic 1 (pilchard, anchovy and round herring)
Pelagic 2 (juvenile horse mackerel and other carangids)
Pelagic mix
Other demersal species, e.g. hake
Plankton and mesopelagic
Mesopelagic
Gobies

The surveyed area was divided into smaller units according to the distribution and density of the horse mackerel and a comparison of the average lengths of the fish, obtained from trawl samples in a specific area. Different trawl samples in the same unit, containing horse mackerel with great difference in length frequencies, were weighted according to the S_{A}-values where necessary. The average S_{A}-values within an unit were then obtained by averaging all data measured during the coverage of that area, excluding those values obtained during trawling.

The following target strength (TS) function was applied to convert $\mathrm{S}_{\mathrm{A}^{-}}$-values (mean integrator value for a given area) to number of fish:

$$
\mathrm{TS}=20 \log \mathrm{~L}-72[\mathrm{~dB}]
$$

or in the form

$$
C_{F}=1.26 \times 10^{6} x L^{-2.0}
$$

where L is the total length (cm) and C_{F} is the fish conversion factor. The following formula was applied to calculate the number of fish in each length frequency group (cm) in an area:

$$
N_{i}=S_{A} \times A \times \frac{P_{i}}{\sum_{i=1}^{n} \frac{P_{i}}{C_{F i}}}
$$

$$
\begin{aligned}
& \text { where } \quad \mathrm{N}_{\mathrm{i}} \quad=\text { number of fish in length group i } \\
& \text { A } \quad=\text { area in } \mathrm{nm}^{2} \\
& \mathrm{~S}_{\mathrm{A}}=\text { mean integrator value in the area } \\
& p_{i} \quad=\text { proportion of fish in length group I in samples from the area } \\
& \mathrm{C}_{\mathrm{Fi}} \quad=\text { fish conversion factor for length group I }
\end{aligned}
$$

The number per length group was then summed and the total number of fish obtained. The total biomass of fish was computed using the mean weight per length group obtained from trawl samples.

2.4 BIOLOGICAL SAMPLING

2.4.1 Trawl data and size composition

All catches were sampled for composition by weight and numbers of each species and the size distribution (total length) of the commercially important species was determined. The size composition of the adult and juvenile horse mackerel was pooled per two degree latitude (Annex V). However, length frequencies of the other pelagic and demersal commercially important species (Annex V), were pooled by simple adding which included all stations trawled during the survey. The above station and size composition data were entered into the NAN-SIS data base.

2.4.2 Biological data

The following biological data were recorded for the horse mackerel and pilchard:

Total length (Lt.) to the nearest mm, body weight and gutted weight (for condition factor) to the nearest mg .

Sex and reproductive stage were described, scoring each individually sampled fish according to the following categories:

1	Juvenile
2	Inactive
3	Active
4	Ripe
5	Spawning
6	Spent
7	Recovering

In addition, otoliths of the horse mackerel were removed for ageing and diameter measurements, at a future date.

Sampling was standardized across 2° latitudinal intervals according to the following rules:

1 Up to 5 individuals were sampled per 1.0 cm length class in each 2° latitude interval.
2 Not more than 3 individuals were sampled per 1.0 cm length class per trawl.

The actual length-weight relationship for the horse mackerel were determined by fitting power curves to the regressions of weight against length. These relationships were determined for the whole region, as well as for each two latitude interval.

The length-weight data (Annex VI) of horse mackerel was also used to calculate the fish condition factor, (weight X 100)/length3³ of the horse mackerel. The condition factors of individual samples were pooled and averaged for each 2° latitude interval, as listed below:

$$
\begin{aligned}
& 25^{\circ} 00^{\prime}-23^{\circ} 00^{\prime} \mathrm{S} \\
& 23^{\circ} 00^{\prime}-21^{\circ} 00^{\prime} \mathrm{S} \\
& 21^{\circ} 00^{\prime}-19^{\circ} 00^{\prime} \mathrm{S} \\
& 19^{\circ} 00^{\prime}-17^{\circ} 00^{\prime} \mathrm{S} \\
& 17^{\circ} 00^{\prime}-16^{\circ} 00^{\prime} \mathrm{S}
\end{aligned}
$$

The data were entered into an EXCEL spreadsheet, and processed accordingly.

CHAPTER 3 RESULTS

3.1 HYDROGRAPHY AND PLANKTON

Annexes II and VII show sections and distribution maps of temperature, salinity, oxygen and fluorescence obtained during the cruise, respectively.

The surface temperature varies between $14^{\circ} \mathrm{C}$ north of Easter Point $\left(25^{\circ} \mathrm{S}\right)$ and $18^{\circ} \mathrm{C}$ at the Cunene $\left(17^{\circ} \mathrm{S}\right)$ up to $20^{\circ} \mathrm{C}$ at Tombua $\left(6^{\circ} \mathrm{S}\right)$. Water masses are weakly stratified in the southern parts ($25^{\circ} \mathrm{S}$ to $22^{\circ} \mathrm{S}$), becoming progressively more stratified in northern parts.

The salinity is very homogeneous in the upper 200 m , especially in the southern area. However, north of the Cunene the halocline becomes more pronounced.

The surface oxygen concentration is above $4 \mathrm{ml} / \mathrm{l}$ throughout the surveyed area. Bottom values are less than $1 \mathrm{ml} / 1$ along the continental slope, but generally increase to $1 \mathrm{ml} / \mathrm{l}$ off the shelf.

The water characteristics indicate upwelling at some of the sections. This is most clearly seen in the oxygen distribution by the upward tilt of the isolines approaching the coast, but it is also indicated by the temperature and salinity distributions. The most typical upwelling situation is seen in the section taken at Walvis Bay $\left(23^{\circ} \mathrm{S}\right)$, where the surface oxygen concentration is less than $2 \mathrm{ml} / \mathrm{l}$ close to the shore. Strong upwelling also seems to have occurred at the Rocky Point section $\left(19^{\circ} \mathrm{S}\right)$. There is evidence for upwelling also at the other sections, except the northernmost one at Cunene.

Three additional CTD stations were taken at $19^{\circ} 40^{\prime} \mathrm{S}$ (Dune Point) to investigate the abrupt displacement of near surface plankton to deeper levels. (Annex II).

The ca. 230 pigment extractions that were done during the cruise, yielded values ranging between 0.2 and $30.3 \mu \mathrm{~g} /$. The highest values were measured during a red tide off Palgrave Point, an area where we recorded a biomass level of less than $5 \mu \mathrm{~g} / \mathrm{l}$ two weeks before, on the journey north. High chlorophyll values ($>15 \mu \mathrm{~g} / \mathrm{l}$) were also recorded in Baía dos Tigres. An example of the food particle size distribution in this area is shown in Annex VIII.

3.2 FISH DISTRIBUTION

The distributions of horse mackerel and the pelagic fish type 2, consisting mainly of juvenile horse mackerel, are shown in Figures 2a-b and 3a-b, respectively. The scale used in the distribution charts to illustrate different levels of density is in absolute acoustic units, the mean integrator value S_{A} for a given area.

The data obtained by the RV 'Welwitschia' for pelagic fish type 2 are included in the distribution pattern. Presentation of the distribution and density of the pelagic fish type 1 are given in the RV 'Welwitschia' cruise report.

3.2.1 Easter Point to Ambrose Bay

In this region, horse mackerel were distributed from Hollandsbird Island to Cape Cross between the 150 m and 500 m isobaths and also in a smaller area around Ambrose Bay from 150-200 m bottom depth. Between Hollandsbird Island and Cape Cross a low density of fish was recorded in most of the distribution area with a fairly dense concentration of horse mackerel found only at the southern tip of the area. Off the Ambrose Bay a smaller shoal with a higher density occurred.

Horse mackerel between Hollandsbird Island and Cape Cross decreased in size from an average total length of 33 cm at Conception Bay to an average total length of 28 cm at Cape Cross. This decrease in size frequency from south towards north is common in the Benguela system and indicates that maturing fishes migrate southwards for spawning, and juveniles in turn drift northwards with the Benguela Current to the feeding area. Around Ambrose Bay the horse mackerel had an average total length of 22 cm .

Pelagic fish type 2 were mainly recorded in the area between Walvis Bay and Ambrose Bay. Fish occurred close inshore with fairly dense shoals occurring between Swakopmund and Cape Cross. Scattered shoals were found between Easter Point and Conception Bay. The fish occurred to 500 m bottom depth in the south. In the southern area the density of the fish was fairly low.

RV 'Dr. Fridtjof Nansen' recorded pelagic fish type 1 between Hollandsbird Island and Walvis Bay up to approximately 200 m bottom depth. A fairly high concentration was recorded inshore off Conception Bay and two scattered areas near Hollandsbird Island also had a fairly high

3.2.2 Ambrose Bay to Cunene River

From Dune Point, horse mackerel were found all the way up to the Cunene River between the 200 m and 500 m isobaths. Fairly high concentrations of horse mackerel occurred in the area off Rocky Point and the Cunene River. The average total length in this area ranged between 20 and 29 cm (see also the RV 'Welwitschia' cruise report). Between the coast and the 200 m isobath most fishes had a total length between 10 and 20 cm and were therefore recorded as pelagic fish type 2. High concentrations of pelagic fish type 2 were encountered between Möwe Point and Cape Frio.

3.2.3 Cunene River to Tombua

Horse mackerel occurred throughout the region between 200 m and 500 m bottom depth, whereas pelagic fish type 2, i.e. juvenile horse mackerel occurred throughout the inshore part of the region. Fairly high concentrations of pelagic fish type 2 were recorded outside Baía dos Tigres. Transects to assess the mid-water stocks were not conducted north of $16^{\circ} 00^{\prime} \mathrm{S}$, but it is likely that some mid-water horse mackerel also occurred north of this line. Trawl samples taken inshore north of $16^{\circ} 30^{\prime}$ S consisted almost entirely of Cunene horse mackerel Trachurus trecae, while further south only Cape horse mackerel T. capensis was caught. The Cape horse mackerel, was however dominant offshore up to the $16^{\circ} 00^{\prime} \mathrm{S}$ transect.

The average total length of the horse mackerel ranged between 17 cm in the inshore region and 24 cm in the offshore region.

Dense concentration of pelagic fish type 1 , mainly pilchard were found south of the Cunene ($18^{\circ} 00^{\prime} \mathrm{S}$) to Baía dos Tigres, including inside the bay (see also RV 'Welwitschia' cruise report).

Figure 2a Distribution of mid-water horse mackerel, Easter Point to Ambrose Bay.

Figure 2b Distribution of mid-water horse mackerel, Ambrose Bay to Tombua.

Figure 3a Distribution of pelagic fish type 2, Easter Point to Ambrose Bay.

Figure 3 b Distribution of pelagic fish type 2, Ambrose Bay to Tombua.

3.3 ABUNDANCE

The total estimated biomass of adult (2+) and juvenile horse mackerel found in Namibia and southern Angola is summarized in Table 1. The biomass assessment was made by region and offshore/inshore areas, the boundary of areas was determined according to the mean length of fish in the trawl catches. The recordings of fish above 20 cm were allocated the offshore area and assessed as the adult stock. Annex IX shows total biomass and total number per 1 cm length group of Trachurus capensis.

To calculate the biomass of the smaller than 20 cm horse mackerel, S_{A}-values obtained by the RV 'Welwitschia' were added to those obtained by the RV 'Dr. Fridtjof Nansen' in the inshore area, and a combined estimate was obtained. Using this method the biomass was estimated to 454270 tonnes between the Cunene River and Ambrose Bay. As a control an average $S_{\text {A- }}$ value was obtained by adding the S_{A}-values of both surveys along the parallel transects of RV 'Dr. Fridtjof Nansen' only. This method gave a biomass estimate of 481330 tonnes.

Table 1. The biomass estimates (in tonnes) per area of adult horse mackerel (2+) and the smalier juvenile horse mackerel.			
Area	$>20 \mathrm{~cm}$	$<20 \mathrm{~cm}$	Total
Tombua- Cunene River	55000	41000	96000
Cunene River- Ambrose Bay	392000	454000	846000
Ambrose Bay- Easter Point	291000	243000	534000
Total Angola Total Namibia	583000	41000	96000
Total northern Benguela	738000	697000	1380000

The total biomass of horse mackerel in Namibian water was estimated at 1380000 tonnes compared to 1440000 tonnes obtained in the RV 'Dr. Fridtjof Nansen' survey in June 1994. For the total northern Benguela system the figures are 1476000 tonnes and 1500000 tonnes respectively.

All pelagic fish type 1 biomass estimates are presented in the RV 'Welwitschia' cruise report.

3.4 BIOLOGICAL ANALYSIS OF FISH

3.4.1 Length-frequency

Annex V shows the length-frequency of the Cape horse mackerel by 2 degree intervals, starting from $25^{\circ} \mathrm{S}$. It is evident from the size composition that the $30+\mathrm{cm}$ fish were scarce. This confirms reports received from the mid-water trawlers that offshore adult horse mackerel $(30+\mathrm{cm})$ were mostly absent from trawls.

The dominant size class range of the offshore horse mackerel surveyed was between 17 and 20 cm . The size composition of the inshore juvenile horse mackerel, which were surveyed largely by the RV 'Welwitschia', will appear in the cruise report of the RV 'Welwitschia'.

Length data of pilchard, anchovy, round herring, hake and Cunene horse mackerel are presented in Annex V. Adult pilchard with a modal peak of 24 cm were found inshore north of $17^{\circ} \mathrm{S}$. Further interpretation of this data will appear in the cruise report of the RV 'Welwitschia'.

3.4.2 Length - Weight

Length-weight curves and regression equations for the Cape horse mackerel per two degree latitude interval, may be found in Annex VI.

3.4.3 Reproductive Status

Results were tabulated for the Cape horse mackerel per two degree latitude interval (see Annex X). It was difficult to draw any conclusions from these results. Nevertheless the following was noted:

1 Sex ratio: the greater portion of the stock in most regions consisted of females.
2 Spawning: no spawning was recorded amongst the adult stock throughout the region.

3.4.4 Condition

Mean condition factor, and related parameters for the adult horse mackerel, are presented for the entire region in Annex XI.

CHAPTER 4 CONCLUDING REMARKS

In general, conditions were favourable for surveying the offshore stock of horse mackerel acoustically. Weather conditions were acceptable, and the fish distributions occurred to be within the range covered by the acoustic equipment. Previous surveys have reported that the offshore horse mackerel migrated to surface water and above transducer range at night, but no such problems were encountered. Dense concentrations of jellyfish occurred, particularly in the central and southern region. These hampered trawling and in some cases broke the net. These difficulties are however of minor importance to the stock estimate. The result that the relative size of the horse mackerel stock in the northern Benguela system is in an order of magnitude of 1.5 mill. tons should therefore be considered to be reasonably accurate.

Experiments conducted during previous surveys indicate that the target strength used to calculate this estimate may be too low. This means that the actual size of the present and previous estimated stocks are correspondingly less than reported. This possible error may however be corrected for when an adequate estimate of the true target strength of the fish is available.

The horse mackerel stock in the northern Benguela system has since 1990 been assessed by acoustic method, the estimates ranging between 1.2 mill. tonnes and 2.1 mill. tonnes (Table 3). The present estimate of 1.5 mill. tonnes is close to the average of these values. Taking into account the relative high proportion of juvenile fish in the present estimate, it is concluded that the stock seems to be in a steady state.

Table 3Biomass estimates of horse mackerel, 1990 to 1995, in the northern Benguela system.		
Survey	Vessel	Horse mackerel
March 1990	Nansen	1200000
June 1990	Nansen	1700000
March 1991	Nansen	1300000
August 1991	Benguela	-
November 1991	Nansen/Benguela	1400000
June 1992	Nansen/Benguela	2100000
August 1992	Benguela	-
November 1992	Benguela	-
March 1993	Nansen	-
June 1993	Nansen	-
August 1993	Benguela	-
November 1993	Benguela	-
June 1994	Nansen	1500000
June 1995	Nansen	1500000

Annex I Instruments and fishing gear

The Simrad EK-500, 38 kHz echo scientific sounder was used during the survey for fish abundance estimation. The Bergen Echo Integrator system (BEI) logging the echogram raw data from the echo sounder, was used to scrutinize the acoustic records, and to allocate integrator data to fish species. All raw data was stored to tape, and a backup of the database of scrutinized data, stored. The details of the settings of the 38 kHz were as follows:

Transceiver-1 menu	Transducer depth	0.0 m
	Absorbtion coeff.	$10 \mathrm{~dB} / \mathrm{km}$
	Pulse length	medium
	Bandwidth	wide
	Max Power	2000 W
	2-way beam angle	-21.0 dB
	SV transducer gain	28.0 dB
	TS transducer gain	27.9 dB
	Angle sensitivity	21.9
	3 dB beamwidth	6.8 deg
	Alongship offset	0.00 deg
Display menu	Athwardship offset	0.04 deg
	Echogram	1
	Bottom range	12 m
	Bottom start	10 m
	TVG	$20 \log \mathrm{R}$
	SV Colour minimum	-67 dB
	TS Colour minimum	-50 dB

Bottom detection menu -50 dB

A calibration experiment using a standard copper sphere, performed in Baia dos Tigres 15 June 1995 gave the following results :

Sv Transducer gain 28.1 dB

Ts Transducer gain 28.0 dB

Hydrography

Conductivity, temperature, density and dissolved oxygen were sampled regularly at CTD stations with a Seabird $911+$ CTD sonde. The salinity is computed from the data on conductivity by the software retrieving data from the sensors.

Fishing gear

The vessel has two different sized "Åkrehamn" pelagic trawls and one "Gisund super" bottom trawl. For all trawls, the Tyborøn, $7.8 \mathrm{~m}^{2}(1670 \mathrm{~kg})$ trawl doors were used. Complete drawings of the trawls used are included.

Annex II Hydrographic and Plankton Profiles

$24^{\circ} \mathrm{S} \quad 2 / 6 / 1995$

$21^{\circ} \mathrm{S} \quad 7 / 6 / 1995$

$19^{\circ} \mathrm{S}$ 10/6/1995

$18^{\circ} \mathrm{S} \quad 11 / 6 / 1995$

$17^{\circ} \mathrm{S} \quad 13 / 6 / 1995$

Summary of additional CTD stations taken at $19^{\circ} 40 \mathrm{~S}$ (Dune Point).

Annex III Summary of fishing stations

Trawl Number	Latitude (${ }^{\circ}$ S)	Bottom Depth (m)	Headrope Depth (m)	Catch by Species (\% of total catch)				Total Catch (kg)
				Trachurus c.	Trachurus t.	Merluccius c.	Sardinops	
1105	25.00	165	75	100	0	0	0	25.03
1106	25.00	214	165	0.74	0	0	0	6.75
1107	24.40	333	175	0	0	0	0	34.73
1108	24.39	333	223	0	0	0	0	17.79
1109	24.44	325	130	0	0	0	0	61.93
1110	24.36	125	25	0.09	0	0	0.83	216.47
1111	24.15	360	110	0	0	0	0	4.5
1112	23.59	261	202	21.87	0	76.1	0	40.47
1113	23.40	402	175	0	0	0	0	49.11
1114	23.20	223	175	90.59	0	0.28	0	43.13
1115	23.19	158	110	3.06	0	83.62	0	4.58
1116	23.00	142	115	0	0	27.58	0	5.04
1117	22.59	416	260	0	0	0	0	93.37
1118	22.40	306	306	0	0	0	0	37.24
1119	22.39	266	202	0	0	55.90	0	10.50
1120	22.19	172	130	0	0	0	0	No catch
1121	22.01	260	115	0	0	71.34	0	1.99
1122	21.59	197	110	71.45	0	26.54	0	25.85
1123	21.40	305	305	0	0	24.50	0	34.53
1124	21.19	248	100	69.67	0	27.15	0	43.64
1125	20.59	142	142	98.49	0	1.51	0	192.91
1126	20.59	273	180	0	0	0	0	1004.18
1127	20.40	310	140	0	0	0	0	15.00
1128	20.40	135	95	20.51	0	1.70	0	8.16
1129	20.20	135	100	0	0	0	0	No catch
1130	20.20	113	90	4.79	0	3.29	0	2.06
1131	20.19	296	125	0.32	0	0	0	15.79
1132	20.00	261	160	99.91	0	0.09	0	350.32
1133	19.40	240	135	74.97	0	25.03	0	34.72
1134	19.20	214	150	078.63	0	20.97	0	33.90
1135	18.59	31	5	19.19	0	0	0.03	693.18
1136	18.59	121	80	99.41	0	0	0	633.71
1137	18.59	159	118	100.00	0	0	0	2.75
1138	18.59	224	224	34.07	0	4.85	0	1547.00
1139	18.48	492	300	0.72	0	0	0	90.87
1140	18.44	295	150	2.76	0	0.67	0	14.88
1141	18.45	243	160	50.53	0	11.16	0	29.41
1142	18.45	191	75	79.72	0	12.28	0	3.56
1143	18.42	106	90	100.00	0	0	0	1400.00
1144	18.29	131	90	99.79	0	0	0	619.31
1145	18.29	181	181	20.73	0	19.75	0	709.00
1146	18.29	251	200	98.15	0	0	0	427.90
1147	18.14	251	190	20.79	0	5.58	0	45.35
1148	18.14	155	110	87.44	0	0	0	200.13
1149	17.59	159	100	4.14	0	6.55	0	32.16
1150	17.45	609	300	11.73	0	0	0	81.81
1151	17.44	269	269	22.42	0	47.71	0	322.16
1152	17.44	160	160	46.03	0	12.76	0	369.65
1153	17.45	106	106	79.74	0	1.77	0	1413.28
1154	17.30	100	100	92.52	0	1.51	0	1367.28
1155	18.00	390	200	77.07	0	4.35	0	223.13
1156	17.15	525	0	0	0	0	0	5.79
1157	17.15	241	130	50.24	0	0	0	4.20
1158	17.14	126	126	72.62	0	0.05	0	532.74
1159	17.14	62	62	96.34	0	0	0	2517.10
1160	17.00	1063	275	0	0	0	0	50.00

Trawl Number	Latitude (${ }^{\circ}$ S)	Bottom Depth (m)	Headrope Depth (m)	Catch by Species (\% of total catch)				Total Catch (kg)
				Trachurus c.	Trachurus t.	Merluccius c.	Sardinops	
1161	16.44	168	120	44.72	0	0.31	0	31.75
1162	16.43	115	60	100.00	0	0	0	2.09
1163	16.45	80	80	86.08	0	0	0	2526.62
1164	16.30	81	35	96.26	0.89	0	0	103.88
1165	16.14	97	97	65.17	1.92	0	0	78.10
1166	16.02	96	55	54.76	29.64	0	0	21.22
1167	16.21	50	50	12.24	56.39	0	0	151.99
1168	16.31	14	14	0	0.84	0	97.81	237.15
1169	16.38	17	5	0	52.11	0	5.26	1.90
1170	17.21	24	5	0	0	0	99.00	2200.00
1171	17.44	14	10	0	0.40	0	97.80	599.20
1172	17.59	41	10	0.06	0	0	43.56	348.95
1173	18.09	125	50	55.10	0	0	10.00	6500.00
1174	18.58	87	50	100.00	0	0	0	280.80
1175	20.18	81	40	90.86	0	0	0	361.00

Annex IV Records of fishing stations

Spectes	CATCH/HOUR		of tor. c
	weight	numbers	
Trachurus capensis, juvenile	150.00	28926	100.00
cobidar juvenile	0.18	198	0.12

species

Brama brama
Trackurus capensis, juvenile
Total

CATCH/HOUR		- of mot. C
12.40	8	91.85
1.00	± 236	7.41
0.10	20	0.74
13.50		100.00

spectiss

myctophidae
Trachipterus jacksonensis

CATCH/HOUR		* Of tot.c
weight	nutabers	
180.00	45600	86.38
28.38	6	13.62
208.38		100.00

DATE: 1	1/ 6/95		GEAR TYPE: PT No:5		PROJECT Stamton:1108			
					pos	Ition:Lat.	s	2439
	start	stop	duration			Long	E	1345
time :	:21:54:00	22:04:00	10 (min)	Purpose code:		1		
LCG :	$=5023.00$	5023.50	0.50			$\frac{1}{2}$		
FDEPTH:	- 223	223		Gearcond code:				
BDEPTH:	333	331		validity	ode:			
Towing dir: 160°			wire out: 675 m speed: $3 \mathrm{kn} * 10$					
Sorted	d: 2 kg		tal eatch:	17.79	cat	CH/ROUR:		6.74

species	CATCH/HOUR		\% OF TOT. 6
myctophidae	60.60	30300	56.77
Xrill	29.40	9798	27.54
Trachipterus jacksonensis	15.36	6	14.39
Beryx splendens	1.26	12	1.18
merluccius paradoxus, juvenile	0.12	6	0.11
rotal	106.74		99.99

Species	CATCH/HOUR		Of tot. C	SAMP
	weight	numbers		
Trachipterus jacksonensis	46.50	12	50.05	
MYCTOPHIDAE	43.50	18590	46.82	
Krini	1.50	2250	2.61	
Centrolophus niger	1.23	2	2.32	
Beryx splendens	0.17	2	0.18	
total	92.90		99.98	

spectes	CATCH/HOUR		Of rom. 6	SAMP
	weight	numbers		
Etrumeus whiteheadi	450.00	12347	97.01	3794
Engraulis capensis	6.00	386	1.29	3796
Sardinaps ocellatus	3.84	116	0.83	3795
Chelidonichthys capensis	3.32	11	0.72	
Trachurus capensis, juvenile	0.41	103	0.09	3797
Hyperoglyphe moselii	0.32	2	0.07	
Total	463.89		100.01	

species	CATCH/HOUR		\% OF TOT. C
	weight	numbers	
Trachurus capensis	47.84	227	90.59
Brama brama	4.22	2	7.99
Trigla lyra	0.53	1	1.00
Herluecius capensis	0.15	1	0.28
Centrolophidae	0.07	1	0.13
Total	52.81		99.99

SPECIES
Merluceius capensis, juveniles
Trigla lyra
Trachurus capensis
Total

CATCH/HOLR		1 OF TOT. C
7.66	256	83.62
1.22	2	13.32
0.28	4	3.06
9.76		200.00

spectes	CATCH/HOUR weight numbers		\% or tot. C	SAMP
migia lyma	18.25	60	72.42	
Meriuccius capensis, juveniles	6.95	140	27.58	3802
Total	25.20		100.00	

DATE:	4/ 5/95		PROJECT STATION:1117						
				AR TYPE:	PT No: 5	POSI	ITION:Lat	s	2259
	start	stop	durat	ion			Long	E	1302
TIME	:10:14:00	10:34:00	20	(min)	Purpose	de:	1		
LOG	5530.20	5531.30	1.10		Area code		2		
FDEPTH	: 260	260			Gearcond.	ode:			
BDEPTH	: 416	379			validity	ode:			
	Towing d	: 330°	wire	out: 82	0 m spee	3	kn*10		

Speciss	CATCH/HOUR weight numbers		\% of tot. c
MYCTOPHIDAE	270.00	198153	96.39
Brama brama	7.98	9	2.85
Krill	1.68	6033	0.60
PHOMICHTHYIDAE	0.33	36	0.12
todarodes sagittatus	0.15	3	0.05
rotal	280.14		200.01

DATE: 4	/ 6/95	Prosect station:1218						
			gear type:	BT No: 8	POSI	Trion: Lat	s	2240
	start	stop	duration			Long	E	1306
TME : 15:13:00 15:26:00 13 (mid) Purpose code:								
LOG :5573.40 $55574.20 \quad 0.70$ Area code								
FDEPTH:	306	307		Gearcond.	ode:			
BLEPTH:	306	307		validity	de:			
Towing dir: 270° wire out: 960 \% m Sped: 3 kn *10								
sorted	d: 7 Kg		tal catch:	37.24		CH/HOUR:		1.88

SPECIES	САТСН/HOLR		- or tot. 6
myctophidas	138.46	107331	80.56
Brama brama	33.42	18	19.44
rotal	171.89		200.00

species	CATCH/HOUR weight numbers		2 OF tot. C SAMP	
Merluccius capensis	i1.74	314	55.90	3803
MYCTOPHIDAE	8.72	6342	41.52	
Sufflogobius bibarbatus	0.40	134	1.90	
Solenocera africana	0.04	6	0.19	
Todarodes sagittatus	0.04	2	0.19	
chlorophthalmus atlanticus	0.02	2	0.10	
trichiuridae	0.02	2	0.10	
PHOTICHTHYIDAE	0.02	2	0.10	
Total	21.00		100.00	

```
stare stop duration TYPE: PT NO:S POSITION:Lat \(\$ 2219\)
TIME :05:29:00 05:55:00 26 Long \(\Sigma 1326\)
\(\begin{array}{llllll}\text { TIME } & : 05: 29: 00 & 05: 55: 00 & 26 & \text { (Fin) Purpose code: } & 1 \\ \text { LOG } & : 5702.80 & 5704: 40 & 1.60 & & \text { Area code }\end{array}\)
\(\begin{array}{llrll}\text { LOG :5702.80 } & 5704.40 & 1.60 \quad \text { Area code } \\ \text { FDEPTA: } & 130 & 130 & & \text { Gearcond.code: }\end{array}\)
\(\begin{array}{lll}\text { FDEPIR: } & 130 & 130 \\ \text { BDEPTH: } 172 & 163 & \text { Gealcond. code: } \\ \text { Validity code: }\end{array}\)
    Towing dir: \(90^{\circ}\) wire out: 375 m speed: \(3 \mathrm{kn} \star 10\)
```

 sorted: \(\mathrm{kg} \mathrm{Total} \mathrm{catch:} \mathrm{CATCH/HOUR:}\)
 specties
NOCATCH
Total

SPECIES
Merluccius capensis, juveniles
EPHALOQODA
Squalus megaiops
total

CATCR/HOUR			OF TOT. C
weight	SAMP		
3.41	67	71.34	3804
0.82	2	17.15	
0.55	2	11.51	
4.78		100.00	

DATE: $5 /$	5/ 6/95	PROTECT STATION:1122						
		GEAR TYPE: PT Mo:5duration			posr	TION:Lat	5	2159
	start					Iong		1309
TIME :19:50:00 20:35:00 45 (min) Purpose code:								
Loc : 5	:5811.20	5814.80	2.80	Area code		2		
FDEPTH:	210	110		Gearcond.	de:			
	197	197		validity	de:			
Towing dir: Wire out 440 m Speed: $4 \mathrm{kn*10}$								
Sorted:	d: 25 k	Total eateh:		25.85	catc	\%/HOUR:	34.47	

species
Trachurus capensis
Merluccius capensi.
Lophius vomerinus
Total

CATCK/HOUR			
weight	numbers		
24.63	144	73.45	3806
9.15	113	26.54	3805
0.69	1	2.00	

species
Brama brama
Merluecius capensis
Krill
Mrevophipas
Helicolenus dactylopterus
Coelorinchus fasciatus
callorhinehus capensis
Squalus megalops
Synagrops microlepis
Nezumia sp.
rotal

CATCH/HOUR		O OF TOT. C	SAMP
weight	numbers		
20.50	14	29.68	
16.92	20	24.50	3807
16.00	41738	23.17	
14.00	10980	20.27	
0.74	18	1.07	
0.32	4	0.45	
0.32	16	0.46	
0.14	2	0.20	
0.10	6	0.14	
0.02	2	0.03	
69.06		99.98	

spectes
Trachurus capensis
Mexluccius capensis, juveniles

CATCH/HOUR		Of Tot.	SAMP
760.00	10944	98.49	3812
11.64	84	1.51	3813

species	CATCH/HOUR weight numbers		OF	SAMP
mXCTOPHIDAE	90.00	70866	200.00	
Total	90.00		100.00	

spectes
Trachurus capensis, juvenile
Brama brama
synagrops microlepis
Merluccius capensis, juveniles Etrumeuc whiteheadi
todarodes sagittatus
Total

CATCH/HOER weight zumbers		\% of tot. c	SAMP
21.46	660	74.51	3813
4.80	7	16.67	
1.65	371	5.76	
0.49	14	1.70	
0.32	7	1.11	
0.07	4	0.24	
28.80		99.99	

spectes
NoCATCH
Total

DATE:					Project stamion: 1130			
	日/ 6/95		GEAR TYPE: PT No: 5		POS	rrion:Lat	s	2020
	start	stop	duration			Long	E	1244
time	:04:23:00	05:00:00	37 (min)	Purpose	de:	1		
LOG	:5276.50	5278.20	1.70	Area code	,	3		
FDEPTH:	: 90	110		Gearcond.	ode:			
BDEPTH	: 113	133		validity	ode:			
	Towing di	r: $270{ }^{*}$	wire out: 300	\% m spee	3	kn*10		
sort	ted: Kg		tal catch:	2.06		CH/HOUR:		3.34

SPECIES
Callorhincthus capensis
Lophius vomerinus
Synagrops microlepis
Trachurs capensis, juvenile
Merluceius capensis, juveniles
Lepidopus caudatus
Total

CATCH/HOUR			OF TOT. C
weight	numbers	SAMP	
2.14	2	64.07	
0.62	2	18.56	
0.28	6	8.38	
0.16	45	4.79	3814
0.12	13	3.29	
0.03	2	0.90	

DATE:	$\begin{gathered} 9 / 6 / 95 \\ \text { start } \end{gathered}$	stop	GEAR TYPE: PT No:5 duration		PROJECT Station: 1134		
					position:lat	s	1920
					Iong	ε	1208
time	:20:05:00	20:20:00	${ }_{0}^{15}$ (7 min)	Purpose code:			
LOG	:6608.40			Area code	: 3		
FDEPTH	: 150	170		Gearcond.	de:		
BDEPTH	: 214	214		Validity			
	Towing		Wire out:	00 in Spee	4 kn * 10		
So:	d: 17 kg		tal catch:	33.09	CATCH/HOUR:		2.36

```
species
Trachurus eapensis
Trachurus capensis
Merluecius capensis, juveniles
``` synagrops microlepis
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CATCH/HOUR weight numbers}} & \% GF Tot. \\
\hline & & \\
\hline 104.08 & 1140 & 78.63 \\
\hline 27.76 & 324 & 20.97 \\
\hline 0.52 & 88 & 0.39 \\
\hline 132.36 & & 99.99 \\
\hline
\end{tabular}

SPECIES
Engraulis capensis
Trachurus capensis, juvenile
Etrumeus whiteheadi
Sardinops ocellatus
Total
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{CATCH/HOUR} & \multirow[t]{2}{*}{- оf tot. C} & \multirow[t]{2}{*}{SAMP} \\
\hline weight & numbers & & \\
\hline 1820.00 & 78400 & 65.64 & 3820 \\
\hline 532.00 & 14112 & 19.19 & 3822 \\
\hline 420.00 & 1232 & 15.15 & 3821 \\
\hline 0.72 & 28 & 0.03 & \\
\hline 2772.72 & & 100.01 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{DATE:10/} & \multirow[b]{3}{*}{/6/95} & \multirow[b]{3}{*}{stop} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{GEAR TYPE: PT No:5 duration}} & \multicolumn{4}{|r|}{PROJECT Station: 1136} \\
\hline & & & & & posi & Ition:Lat & S & 1859 \\
\hline & & & & & & Long & E & 1209 \\
\hline TIME :0 & 05:25:00 & 05:50:00 & 25 (min) & Purpose c & e: & 1 & & \\
\hline Log : 6 & 6672.40 & 6673.90 & 1.50 & Area code & : & 3 & & \\
\hline FDEPTH: & 80 & 80 & & gearcond. & ade: & & & \\
\hline 8DEPTH: & 121 & 112 & & validity & de: & & & \\
\hline & Towing di & r: \(270^{*}\) & Wire out: 25 & 50 II Speed & \(\bigcirc\) & kn 10 & & \\
\hline Sorted & d: 8 kg & & tal catch: & 633.71 & catce & CH/HOUR: & & 0.90 \\
\hline
\end{tabular}

SPECIES CATCH/HOUR : OF TOT. C SAMP
Trachurus capensis
total

\begin{tabular}{|c|c|c|c|c|}
\hline spectes & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CATCH/HOUR weight numbers}} & \multirow[t]{2}{*}{Q OF Tot. C} & SAMP \\
\hline & & & & \\
\hline Dentex macrophthalmus & 3720.00 . & 18716 & 60.12 & \\
\hline trachurus capensis & \(2108.00^{\circ}\) & 14848 & 34.07 & 3825 \\
\hline Merluecius capensis & 300.00 & 2028 & 4.85 & 3826 \\
\hline Synagrops microlepis & 60.00 & 8724 & 0.97 & \\
\hline Total & 6188.0 & & 100.01 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SPECIES} & \multicolumn{2}{|l|}{CATCE/HOUR} & \multirow[t]{2}{*}{1 OF Tot. C} & SAMP \\
\hline & weight & numbers & & \\
\hline CRJRR00 & 132.00 & 206250 & 48.42 & \\
\hline MYCTOFHIDAE & 78.00 & 20001 & 28.61 & \\
\hline Trachipterus trachypterus & 55.71 & 51 & 20.44 & \\
\hline octopus sp. & 2.85 & 3 & 1.05 & \\
\hline Trachurus capensis & 1.95 & 9 & 0.72 & \\
\hline Squalus megalops & 1.08 & 3 & 0.40 & \\
\hline Todarodes sagittatus & 0.93 & 3 & 0.34 & \\
\hline Macroparalepis macrogeneion & 0.09 & 9 & 0.03 & \\
\hline Total & 272.61 & & 100.01 & \\
\hline
\end{tabular}

species
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{CATCH/HOUR} & \% of tot. C \\
\hline weight & numbers & \\
\hline 18.21 & 26556 & 40.79 \\
\hline 12.15 & 8208 & 27.22 \\
\hline 5.49 & 9 & 12.30 \\
\hline 4.92 & 6 & 11.02 \\
\hline 1.23 & 9 & 2.76 \\
\hline 0.99 & 1500 & 2.22 \\
\hline 0.72 & 78 & 1.61 \\
\hline 0.63 & 306 & 1.41 \\
\hline 0.30 & 3 & 0.67 \\
\hline 44.64 & & 100.00 \\
\hline
\end{tabular}

SPECIES
xrachurus capensis
Deepwater fish mixture
Merluccius capensis, juveniles
Lophius vomerinus
Squalus megalops
Total
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{CATCH/HOLR} & \multirow[t]{2}{*}{OF} & SAMP \\
\hline weight & numbers & & \\
\hline 28.76 & 203 & 50.53 & 3829 \\
\hline 15.83 & & 27.81 & \\
\hline 6.35 & 110 & 11.16 & 3828 \\
\hline 4.28 & 6 & 7.52 & \\
\hline 1.70 & 6 & 2.99 & \\
\hline 56.92 & & 100.01 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{DATE:11/} & \multirow[b]{2}{*}{/6/95} & \multicolumn{7}{|c|}{PROJECT STATION} \\
\hline & & & GEAR TYPE & PT No: 5 & posi & TION:Lat & s & 1845 \\
\hline & \multicolumn{8}{|l|}{start stop duration Long E 1152} \\
\hline \multicolumn{9}{|l|}{TTME :00:37:00 01:15:00 38 (miД) Purpose code:} \\
\hline \multicolumn{9}{|l|}{LOG :6802.90 \(6805.60 \quad 2.70\) Area code} \\
\hline \multirow[t]{2}{*}{FDEETH: HDEPTH:} & 75 & \multirow[t]{2}{*}{105
162} & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Gearconc.code: \\
validity code:
\end{tabular}}} \\
\hline & 191 & & & & & & & \\
\hline \multicolumn{3}{|r|}{Towing dir: \(90^{\circ}\)} & \multicolumn{6}{|l|}{Wire out: 250 m Speed: \(3 \mathrm{kn*10}\)} \\
\hline Sorted & ed: x & & tal catch: & 3.56 & сатс & H/HOUR: & & 5.62 \\
\hline
\end{tabular}

SPECTES
trachurus capensis
Merluccius capensis
syangrops microlepis
Total
\begin{tabular}{rrrr}
\multicolumn{2}{c}{ CATCH/HOUR } & OF TOT. C & SAMP \\
weight & numbers & & \\
4.48 & 81 & 79.72 & 3931 \\
0.69 & 46 & 12.28 & 3830 \\
0.44 & 62 & 7.83 & \\
& & & \\
& & & \\
& & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{DATE:11/} & & \multicolumn{7}{|r|}{PROTECT Statton:1143} \\
\hline & \multirow[t]{2}{*}{/ \(\begin{aligned} & \text { 6/95 } \\ & \text { start }\end{aligned}\)} & & gear type: & PT No: 5 & posi & ITION:Lat & 5 & 1842 \\
\hline & & stop & duration & & & Long & E & 1200 \\
\hline \multicolumn{9}{|l|}{TIME :03:01:00 03:28:00 27 (min) purpose code:} \\
\hline \multicolumn{9}{|l|}{LOG : 6816.70 6818.20 1.50 Area code} \\
\hline \multicolumn{9}{|l|}{FDEPTH: 90 60 Gearcond.code:} \\
\hline \multicolumn{9}{|l|}{BDEPTH: 106108 Validity code:} \\
\hline \multicolumn{9}{|c|}{Towing dir: \(328^{\circ}\) Wire out: 200 m Speed: 3 kn 10} \\
\hline Sorted & d: 15 kg & & tal catch: & 1400.00 & CATC & CH/HOUR: & & 1.11 \\
\hline
\end{tabular}
spectes
Trachurus capensis, juvenile
Total
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{CATCH/HOUR \% OF TOT. C SAMP} \\
\hline weight & numbers & & \\
\hline 3111.11 & 75911 & 100.00 & 3832 \\
\hline 3112.11 & & 100.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Date: \(11 /\)} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{1/6/95}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{GEAR TYPE: \(\operatorname{bT}\) NO: 8}} & \multicolumn{4}{|r|}{Prosect station: 1145} \\
\hline & & & & & Posy & ITION:Lat & \(s\) & 2829 \\
\hline & start & stop & duration & & & Inong & E & 2138 \\
\hline TIME : 0 & 08:16:00 & 08:26:00 & 20 (min) & purpose & : & 1 & & \\
\hline LOG : 6 & 6851.70 & 6852.20 & 0.50 & Area code & & 3 & & \\
\hline FDEPTH: & 181 & 278 & & Gearcond. & de: & & & \\
\hline BDEPTH: & 181 & 178 & & validity & de: & & & \\
\hline & Towing & \(90^{\circ}\) & wire out: 63 & 30 ml Spee & & kn*10 & & \\
\hline Sorted & d: Kg & & tal eazch: & 709.00 & caic & CH/HOUR: & & 4.00 \\
\hline
\end{tabular}

\section*{species}

Dentex macrophthalmus
rachurus capensis
herluccius capensis
Pterothrissus bellaci
Chlorophthalmus atlanticus
Total
\begin{tabular}{rrrr}
\multicolumn{3}{c}{ CATCH/HOUR } & OF TOT. C \\
weight & SAMP \\
1932.00 & 9594 & & 45.42 \\
882.00 & 85332 & 20.73 & 3834 \\
840.00 & 3084 & 19.75 & \\
468.00 & 80700 & 21.00 & \\
108.00 & 1824 & 2.54 & \\
24.00 & 3425 & 0.56 & \\
4254.00 & & 100.00 &
\end{tabular}
 Sorted: 40 Kg Total catch: 427.90 CATCH/HOUR: 2139.50

\section*{SPECIES}

Trachuras capensis
zenopsis conchifer
total
\begin{tabular}{rrrr}
\multicolumn{2}{c}{ CATCH/HOUR } & OF TOT. C & SAMP \\
weight & numbers & & \\
2100.00 & 11880 & 98.15 & 3835 \\
36.25 & 20 & 1.69 & \\
3.25 & 5 & 0.15 & \\
\hline 2139.50 & & 99.99 &
\end{tabular}

Sorted: 1 Kg Total catch: 45.35 CATCH/HOUR: 104.65
\begin{tabular}{lrrrr}
SPECIES & \multicolumn{2}{c}{ CATCH/HOUR } & OF TOT. c & SAMP \\
MYCTOPHIDAE & weight & numbers & & \\
Trachurus capensis & 50.28 & 35917 & 48.05 & \\
zenopsis conchifer & 22.76 & 136 & 20.79 & 3836 \\
Trachipterus trachypterus & 13.04 & 28 & 12.46 & \\
Merluccius capensis & 7.55 & 7 & 7.21 & \\
Krill & 5.84 & 7 & 5.58 & \\
Dentex macrophthalmus & 3.22 & 8019 & 3.07 & \\
Synagrops microlepis & 1.71 & 7 & 1.63 & \\
Total & 1.27 & 125 & 1.21 & \\
& & 104.66 & & 100.00
\end{tabular}

\begin{tabular}{lrrrr}
SPECIES & \multicolumn{2}{c}{ CATCH/HOUR } & OF TOT. © & SAMP \\
& weight & numbers & & \\
Trachurus capensis, juvenile & 750.00 & 13817 & 87.44 & 3837 \\
Squalus megalops & 82.41 & 13 & 9.61 & \\
Synagrops microlepis & 25.29 & 5949 & 2.95 & \\
rotal & & 857.70 & & 100.00
\end{tabular}

SPECIEs
MYCTOPEIDAE
Trachurus capensis
Zenopsis conchifer
Vitreledonella richardi
Squalus megalops
Trachipterus trachypterus
Lampadena sp.
Photonectes braueri
Krill
Macroparalepis macrogeneion
Small squids
TrichruridaE
Total
\begin{tabular}{rrrr}
\multicolumn{3}{c}{ CATCH/HOUR } & OF TOT. C \\
weight & SAMP \\
219.88 & numbers & OF & \\
35.12 & 219 & 73.46 & \\
9.64 & 18 & 11.73 & 3841 \\
9.04 & 4 & 3.22 & \\
5.51 & 7 & 3.02 & \\
5.47 & 7 & 1.84 & \\
3.71 & 187 & 1.83 & \\
3.71 & 64 & 1.24 & \\
3.71 & 6364 & 1.24 & \\
1.76 & 942 & 0.59 & \\
1.76 & 60 & 0.59 & \\
0.04 & 7 & 0.01 & \\
\hline 299.35 & & 100.01 &
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{CATCH/HOUR} & \multirow[t]{2}{*}{- of tos. c} & \multirow[t]{2}{*}{SAMP} \\
\hline weight & numbers & & \\
\hline 444.90 & 804 & 46.03 & 3842 \\
\hline 216.72 & 1104 & 22.42 & 3843 \\
\hline 120.66 & 3462 & 12.48 & \\
\hline 101.16 & 2781 & 10.47 & \\
\hline 42.12 & 198 & 4.36 & \\
\hline 26.20 & 159 & 1.68 & \\
\hline 1290 & 1314 & 1.33 & \\
\hline 5.46 & 18 & 0.56 & \\
\hline 2.52 & 93 & 0.26 & \\
\hline 2.22 & 12 & 0.23 & \\
\hline 1.32 & 18 & 0.14 & \\
\hline 0.30 & 30 & 0.03 & \\
\hline 0.00 & & & \\
\hline 966.48 & & 99.99 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{DATE:12/} & \multirow[b]{2}{*}{/ 6/95} & \multirow[b]{3}{*}{stop} & \multirow[b]{3}{*}{GEAR TXPE duration} & \multirow[b]{3}{*}{BT No: 8} & \multicolumn{3}{|l|}{PROJECT Stamton: 1153} \\
\hline & & & & & position: Lat & s & 1745 \\
\hline & start & & & & Long & E & 1140 \\
\hline TIME : & 12:37:00 & 12:52:00 & 15 (min) & purpose coder & de: 1 & & \\
\hline Los : & 7062.90 & 7063.80 & 0.90 & Ares code & : 3 & & \\
\hline EDEPTH: & 105 & :10 & & Gearcond. & de: & & \\
\hline BDEPTH: & 106 & 110 & & validity & de: & & \\
\hline & Towing d & r: \(270^{\circ}\) & Wire out: 40 & 00 m speed & \(3 \mathrm{kn} * 10\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SPECIES} & \multicolumn{2}{|l|}{CATCH/HOUR} & \multirow[t]{3}{*}{8 OF TOT.} & \multirow[t]{2}{*}{SAMP} \\
\hline & weight & numbe & & \\
\hline Trachurus capensis & 4508.00 & 103180 & & 3846 \\
\hline Dentex macrophthalmus & 924.48 & 2322 & 16.35 & \\
\hline merluccius capensis & 99.84 & 600 & 1.77 & \\
\hline Trigla lyra & 41.08 & 256 & 0.73 & \\
\hline Argyrosomus hololepidotus & 32.88 & 24 & 0.58 & \\
\hline Pterothrissus belloci & 16.28 & 256 & 0.29 & \\
\hline SOLEIDAE & 11.96 & 172 & 0.21 & \\
\hline Squalus megalops & 5.40 & 4 & 0.10 & \\
\hline Octopus valgaris & 4.32 & 4 & 0.08 & \\
\hline Raja pullopunctata & 3.72 & 4 & 0.07 & \\
\hline TRICHIURIDAE & 3.44 & 512 & 0.06 & \\
\hline Synagrops microlepis & 1.72 & 344 & 0.03 & \\
\hline Total & 5653.12 & & 100.01 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{specties} & \multicolumn{2}{|l|}{CATCH/HOUR} & \multirow[t]{2}{*}{* OF TOT. C} & \multirow[t]{2}{*}{SAMP} \\
\hline & weight & numbers & & \\
\hline Trachurus capensis & 343.94 & 2464 & 77.07 & 3848 \\
\hline Krill & 71.20 & 38888 & 15.95 & \\
\hline Merluecius capensis, juveniles & 19.40 & 642 & 4.35 & 3849 \\
\hline HYCTOPHIDAE & 8.80 & 7794 & 1.97 & \\
\hline Squaius megalops & 2.46 & 6 & 0.55 & \\
\hline Lepidopus caudatus & 0.36 & 6 & 0.08 & \\
\hline zeus capensis & 0.06 & 2 & 0.01 & \\
\hline synagrops microlepis & 0.04 & 4 & 0.01 & \\
\hline Total & 446.26 & & 99.99 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{DATE: \(12 /\) 6/95} & \multirow[b]{3}{*}{stop} & \multicolumn{3}{|l|}{\multirow[b]{3}{*}{GEAR RYPE: PT No:2 duration}} & \multicolumn{6}{|r|}{PROJECT STATION: 1156} \\
\hline & & & & & posi & Ition:I & Lat. & s & & 715 \\
\hline & & & & & & & zong & E & & 115 \\
\hline TIME : 21:22:00 & 21:52:00 & 30 & (min) & Purpose cos & : & 1 & & & & \\
\hline LOG :7133.50 & 7135.30 & 1.80 & & axea code & : & 3 & & & & \\
\hline FDEPTH: 0 & 0 & & & Gearcond. & de: & & & & & \\
\hline BDEPTH: 525 & 627 & & & validity & de: & & & & & \\
\hline Towing di & : 270* & Wire & out: 18 & 30 m speed & 5 & k7*10 & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{DATE:13/} & & & & & & Rosect sta & Trio & N:1159 \\
\hline & / 6/95 & & gear type: & : BT No: 8 & POSI & Ition: Lat & s & 1714 \\
\hline & start & stop & duration & & & Long & E & 1140 \\
\hline time : & :03:53:00 & 04:08:00 & 25 (min) & Purpose & : & 2 & & \\
\hline Ios : 7 & :7175.20 & 7176.00 & 0.80 & Area code & & 3 & & \\
\hline FDEPTH: & 62 & 61 & & Gearcond. & de: & & & \\
\hline \multirow[t]{2}{*}{BDEPTH:} & 62 & 61 & & Validity & de: & & & \\
\hline & \multicolumn{2}{|l|}{Towing dir:} & Wire out: 250 & 50 m Spe & 3 & kn*10 & & \\
\hline \multicolumn{2}{|l|}{Sorred:} & kg To & cotal cateh: & 2517.10 & CATC & CH/HOUR: & & 68.40 \\
\hline
\end{tabular}
species
Irachurus capensis, juvenile
Trigla lyra
Galeichthys feliceps
TReHIORJDAE
Argyrosomus hololepidotus
Squalus megalops
Callorhinchus capensis
Diplodus sargus capensis
Pomatomus saltatrix
Zeus faber
Todarodes sagittatus
SoLEIDAE
Total

Sorted: Kg Total catch: 31.75 CATCH/HOUR: 76.20
species
Deepwater fish mixture
rrachurus capensis
MYCTOPHIDAE
CEPHALOPODA
kerluecius capensis, juveniles
synagrops microlepis
Total
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{СатСh/mocr} & \multirow[t]{3}{*}{1 Of tot.c} & \multirow[t]{2}{*}{SAMP} \\
\hline weight & numbers & & \\
\hline 34.80 & & & \\
\hline 34.08 & 3396 & 44.72 & 3853 \\
\hline 5.28 & 12 & 6.93 & \\
\hline 1.20 & 24 & 1.57 & \\
\hline 0.48 & 528 & 0.63 & \\
\hline 0.24 & 12 & 0.31 & \\
\hline 0.12 & 24 & 0.16 & \\
\hline 76.20 & & 99.99 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline spectes & \begin{tabular}{l}
CATC \\
weight
\end{tabular} & HOUR numbers & 1 Of tot. C & SAMP \\
\hline Trachurus capensis & 4.18 & 66 & 100.00 & 3854 \\
\hline rotal & 4.18 & & 100.00 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{dATE: 14} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{/ 6/95}} & & & \multicolumn{4}{|l|}{PROJECT STATION:I163} \\
\hline & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{GEAR TYPE: BT No:8
duration}} & FOSI & ITION:Lat & 5 & \multirow[b]{2}{*}{1137} \\
\hline & \multicolumn{2}{|l|}{start stop} & & & \multicolumn{2}{|l|}{Long} & E & \\
\hline time & :00:01:00 & 00:16:00 & 15 (min) & Purpose cod & e: & : & & \\
\hline \(10 G\) & :7314.70 & 7315.60 & 0.90 & Area code & & 3 & & \\
\hline FDEPTH & : 80 & 72 & & Gearcond. & de: & & & \\
\hline BDEFTH & : 80 & 72 & & validity & de: & & & \\
\hline & Towing & : \(90^{\circ}\) & wite out: & 20 파 speed & 3 & kn*10 & & \\
\hline
\end{tabular}

\section*{spectes}

Trachurus capensis
dentex macrophthalmus
Lepidopus caudatus
Sepia australis
rgyrosomus hololepidotus
\(i\) thognathus aureti
Total
\begin{tabular}{rrrr}
\multicolumn{4}{c}{ CATCH/HOUR } \\
weight & numbers & OF TOT. C & SAKP \\
8700.00 & 232432 & 86.08 & 3855 \\
1300.00 & 26244 & 12.86 & \\
80.00 & 18180 & 0.79 & \\
12.40 & 4 & 0.12 & \\
10.48 & 4 & 0.10 & \\
3.60 & 4 & 0.04 & \\
\hline 10106.48 & & 99.99 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{SATE:14/} & & & & & \multicolumn{4}{|l|}{Project station: 1164} \\
\hline & \multirow[t]{2}{*}{6/95
start} & & GEAR TYPE: & PT No: 5 & POSI & ITros:Lat & s & 1630 \\
\hline & & stop & duration & & & Long & E & 1135 \\
\hline time : 0 & 02:57:00 & 03:17:00 & 20 (min) & Purpose e & le: & 1 & & \\
\hline Log : & 7335.00 & 7336.30 & 1.30 & Area code & & 3 & & \\
\hline FDEPTH: & 35 & 40 & & Gearcond. & de: & & & \\
\hline BDEFTH: & 81 & 85 & & validity & de: & & & \\
\hline \multicolumn{3}{|r|}{Tewing dir: \(270{ }^{\circ}\)} & Wire out: & 20 m Spee & \multicolumn{2}{|l|}{3 kn *10} & & \\
\hline Sorted & d: \(\quad \mathrm{x}\) & & tal catch: & 103.88 & Catc & CH/HODR: & & 1.64 \\
\hline
\end{tabular}

\section*{spectes}

Trachurus capensis
Argonauta argo
rrachurus trecae, juvenile
rigla lyra
Etrumeus whiteheadi
Trachipterus trachypterus
Total
\begin{tabular}{rrcr}
\multicolumn{2}{c}{ CATCH/HOOR } & OF TOT. C & SAMP \\
weight & numbers & & \\
300.00 & 5727 & 96.26 & 3856 \\
4.20 & 18 & 1.35 & \\
2.75 & 54 & 0.89 & \\
2.75 & 54 & 0.89 & \\
0.72 & 9 & 0.23 & \\
0.60 & 18 & 0.19 & \\
0.60 & 3 & 0.19 & \\
\hline 321.64 & & 100.00 &
\end{tabular}

SPECIES
Trachurus trecae, juvenile
Sardinops ocellatus
Lepidopus caudatus
Hyperoglyphe moselii
Sphspo3
\begin{tabular}{crcr}
\multicolumn{2}{c}{\begin{tabular}{c}
CATCH/HOUR \\
weight
\end{tabular}} & numbers & OF TOT. C \\
3.96 & 192 & & SAMP \\
1.92 & 16 & 25.11 & 3865 \\
1.00 & 12 & 13.26 & 3866 \\
0.44 & 8 & 5.79 & \\
0.28 & 16 & 3.68 & \\
& & & \\
\hline 7.60 & & 100.00 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{DATE:17/ \(\begin{aligned} & \text { 6/95 } \\ & \text { start } \\ & \text { stop }\end{aligned}\)}} & \multicolumn{5}{|r|}{PROJECT Station: 1170} \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{GEAR TYPE: PT No:7
duration}} & POSITION:Lat & \multirow[t]{2}{*}{5} & 1721 \\
\hline & & & & Long & & 1143 \\
\hline TIME :11:13:00 & 11:43:00 & 30 (min) & \multicolumn{4}{|l|}{Purpose code: 1} \\
\hline 10G:7781.00 & 7782.60 & 1.60 & \multicolumn{4}{|l|}{Area code : 3} \\
\hline FDEPTH: & 5 & & \multicolumn{4}{|l|}{Gearcond.code:} \\
\hline HDEPTH: 24 & 24 & & \multicolumn{4}{|l|}{Validity code:} \\
\hline Towing di & r: \(350^{\circ}\) & Wire sut: & Im Speed & \(200 \mathrm{kn*10}\) & & \\
\hline sorted: \(\quad \mathrm{k}\) & & tal catch: & 2200.00 & CATCH/HOLR: & & 0.00 \\
\hline
\end{tabular}
spectes
Sardinops ocellatus
Etrumeus whiteheadi
Total

\section*{specties}

Sarcinops ocellatus
trameus whiteheadi
rachurus trecae
Engraulis capensis
Total
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{CATCH/HOLR} & \multirow[t]{2}{*}{- ог тоt. c} & SAMP \\
\hline weight & numbers & & \\
\hline 2069.24 & 23841 & 97.80 & 3868 \\
\hline 33.88 & 1747 & 1.60 & \\
\hline 8. 47 & 197 & 0.40 & \\
\hline 4.24 & 318 & 0.20 & \\
\hline 2114.83 & & 100.00 & \\
\hline
\end{tabular}

\section*{species}

Trachurus capensis, juvenile
Etrumeus whiteheadi
Engraulis capensis
rotal
\begin{tabular}{rrcr}
\multicolumn{2}{c}{ CATCH/HOUR } & OF TOT. \(C\) & SAMP \\
weight & numbers & OF \\
1789.09 & 197307 & 90.86 & 3878 \\
130.91 & 7015 & 6.65 & 3876 \\
49.09 & 2962 & 2.49 & 3877 \\
\hline & & & \\
\hline
\end{tabular}

\section*{Annex V Length frequencies of different areas}

SAMPLES FOUND BETWEEH ST. NO. 1105 AND 1114.
samples searched between st. no. 1105 and 1121.

MEAN LENGTH \(=21.73 \mathrm{~cm} \quad \mathrm{~N}=371\)
NUMEER OF SUBSAMPLES : 4
SAMPLES FOUND BETWEEN ST. NO. 1122 AND 1125.
SAMPLES SEARCHED BETWEEN ST. NO. 1122 AMD 1125

MEAN LENGTH \(=21.11 \mathrm{~cm} \quad \mathrm{~N}=1690\)
number of subsamples : 19
SAMPLES FOUND BETWEEN ST. NO. 1141 and 1173.
SAMPLES SEARCHEO BETWEEN ST. NO. 1141 AND 1159

MEAN LENGTH \(=14.95 \mathrm{~cm} \quad \mathrm{~N}=280\)
NUMBER OF SUBSAMPLES : 5
SAIMLES FOUHD BETWEEN ST. NO. 1165 AND 1169.
SAMPLES SEARGHED BETWEEN ST. NO. 1105 AND 1175

MEAN LEMGTH \(=15.95 \mathrm{~cm} \quad \mathrm{~N}=613\)
HUMBER OF SUBSAMPLES : 6
SAMPLES FOUND BETWEEN ST. MO. 1110 And 1175.
SAMPLES SEARCHED BETWEEN ST. NO. 1105 AND 1175

Annex VI Length-weight relations

Cape horse mackerel biological data

\(\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { AREA } \\ 23^{\circ}-21^{\circ}\end{array} & \begin{array}{c}\text { LENGTH } \\ \text { NO. FISH }\end{array} & \begin{array}{c}\text { TOTAL } \\ \text { (cm) }\end{array} & \begin{array}{c}\text { NEIGHT } \\ \text { (g) }\end{array}\end{array} \begin{array}{c}\text { WEIGHT } \\ \text { (g) }\end{array}\right]\).

Cape horse mackerel biological data
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
AREA \\
\(21^{\circ}-19^{\circ}\) \\
NO. FISH
\end{tabular} & \begin{tabular}{c}
LENGTH \\
CLASS \\
(cm)
\end{tabular} & \begin{tabular}{c}
TOTAL \\
WEIGHT \\
(g)
\end{tabular} & \begin{tabular}{c}
NET \\
WEIGHT \\
(g)
\end{tabular} \\
\hline 1 & 5.7 & 1.4 & 1.1 \\
5 & 6.5 & 2.3 & 2.1 \\
31 & 7.4 & 3.5 & 3.2 \\
15 & 8.4 & 4.8 & 4.3 \\
6 & 9.6 & 6.8 & 6.2 \\
5 & 10.2 & 8.4 & 7.8 \\
10 & 11.5 & 12 & 11.1 \\
8 & 12.3 & 14.7 & 13.8 \\
3 & 13.6 & 19.6 & 18.3 \\
4 & 14.3 & 22.6 & 21 \\
14 & 15.6 & 31.7 & 28.3 \\
24 & 16.5 & 36.6 & 33.4 \\
18 & 17.4 & 41.6 & 37.2 \\
22 & 18.4 & 47.8 & 44.5 \\
16 & 19.4 & 56.6 & 52.6 \\
9 & 20.6 & 69.7 & 64.1 \\
13 & 21.3 & 79.7 & 73.9 \\
25 & 22.4 & 88.5 & 81.3 \\
14 & 23.5 & 98.7 & 91.1 \\
18 & 24.5 & 110 & 102.5 \\
13 & 25.3 & 119.2 & 110.7 \\
10 & 26.5 & 13.6 & 121.8 \\
5 & 27.3 & 154 & 144.4 \\
2 & 28.2 & 156.3 & 147.7 \\
1 & 29.2 & 165.5 & 155 \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline AREA & LENGTH & TOTAL & NET \\
\hline \(\mathbf{1 9}^{\circ} \mathbf{\circ} \mathbf{1 7}^{\circ}\) & \begin{tabular}{c}
CLASS \\
NO. FISH
\end{tabular} & \begin{tabular}{c}
WEIGHT \\
\((\mathbf{c m})\)
\end{tabular} & \begin{tabular}{c}
WEIGHT \\
\((\mathrm{g})\)
\end{tabular} \\
\hline & & & \\
& & & \\
& & & \\
5 & 8.4 & 4.9 & 4.5 \\
6 & 9.4 & 6.4 & 5.9 \\
7 & 10.3 & 8.6 & 8 \\
4 & 11.6 & 12.1 & 11.2 \\
3 & 12.3 & 14.2 & 13.1 \\
2 & 13.6 & 18.7 & 17.6 \\
3 & 14.7 & 25.1 & 23.5 \\
19 & 15.5 & 28.3 & 26.4 \\
13 & 16.5 & 34.1 & 31.9 \\
43 & 17.1 & 40.2 & 37.4 \\
55 & 18.4 & 47.4 & 44.5 \\
26 & 19.3 & 53.2 & 50.1 \\
17 & 20.3 & 63.7 & 60.1 \\
13 & 21.4 & 71.1 & 81.5 \\
8 & 22.5 & 86.5 & 81.5 \\
11 & 23.5 & 96.3 & 91.3 \\
13 & 24.4 & 102.1 & 91.9 \\
16 & 25.3 & 115.7 & 109.6 \\
26 & 26.4 & 130.5 & 123.3 \\
29 & 27.4 & 152.9 & 14.9 \\
13 & 28.4 & 163.7 & 154.8 \\
17 & 29.4 & 182.8 & 172.9 \\
11 & 30.5 & 201.2 & 188.2 \\
4 & 31.3 & 228.6 & 191.4 \\
5 & 32.3 & 234.4 & 221.4 \\
6 & 33.3 & 261.4 & 249.1 \\
5 & 34.2 & 277.8 & 259.1 \\
5 & 35.2 & 294.8 & 280.2 \\
6 & 36.6 & 339.5 & 323.4 \\
1 & 37.3 & 386.6 & 369.2 \\
1 & 38.2 & 372.6 & 358.4 \\
& & & \\
\hline
\end{tabular}

Cape horse mackerel biological data

\(\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { AREA } \\ 25^{\circ}-16^{\circ}\end{array} & \begin{array}{c}\text { LENGTH } \\ \text { NO. FISH }\end{array} & \begin{array}{c}\text { TOTAL } \\ \text { (cm) }\end{array} & \begin{array}{c}\text { WEIGHT } \\ \text { (g) }\end{array}\end{array} \begin{array}{c}\text { NET } \\ \text { WEIGHT } \\ \text { (g) }\end{array}\right]\).

HORSE MACKEREL LENGTH - WEIGHT IN AREAS \(25^{\circ}\) TO \(23^{\circ}\)

Annex VII Distribution of near surface environmental parameters

Temperature (\({ }^{\circ} \mathrm{C}\)) June 1995

Oxygen (ml/l) June 1995

Salinity (ppt) June 1995

Fluore scence, June 1995

\section*{Annex VIII Food particle size distribution}

Plankton particle size distribution and volume at trawl station BT1168 in Baia dos Tigres.
Annex IX Biomass and numbers
Total biomass (tonnes) of \(>20 \mathrm{~cm}\) horse mackerel, Trachurus capensis, and total number per 1 cm length class (in millions) per area.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Area & & \[
\begin{aligned}
& \hline 16^{\circ} 00^{\prime}- \\
& 17^{\circ} 15^{\prime}
\end{aligned}
\] & \[
\begin{gathered}
17^{\circ} 15^{\prime}- \\
17^{\circ} 50^{\prime}
\end{gathered}
\] & \[
\begin{gathered}
17^{\circ} 50^{\prime}- \\
18^{\circ} 50^{\prime}
\end{gathered}
\] & \[
\begin{gathered}
18^{\circ} 50^{\prime}- \\
19^{\circ} 10^{\prime}
\end{gathered}
\] & \[
\begin{aligned}
& 19^{\circ} 10^{\prime}- \\
& 20^{\circ} 30^{\prime} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
20^{\circ} 30^{\prime}- \\
21^{\circ} 30^{\prime} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21^{\circ} 30^{\prime}- \\
23^{\circ} 30^{\prime} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
23^{\circ} 30^{\prime}- \\
25^{\circ} 00^{\prime} \\
\hline
\end{array}
\] & Sum \\
\hline Size of the area (\(\mathrm{nm}^{2}\)) & & 474 & 737 & 921 & 2470 & 921 & 789 & 2099 & 1088 & 9499 \\
\hline Mean Sa value (\(\mathrm{m}^{2} / \mathrm{nm}^{2}\)) & & 521 & 659 & 248 & 394 & 407 & 234 & 164 & 429 & \\
\hline Total Biomass (tonnes) & & 54680 & 126940 & 63580 & 126320 & 75240 & 38480 & 101530 & 151290 & 738060 \\
\hline \multirow[t]{21}{*}{No. per length class (mill.)} & 20 & 148 & 30 & & 246 & 184 & 121 & & & 729 \\
\hline & 21 & 126 & 85 & 1 & 130 & 187 & 116 & & & 645 \\
\hline & 22 & 89 & 85 & 10 & 328 & 204 & 123 & & & 842 \\
\hline & 23 & 58 & 118 & 4 & 143 & 110 & 60 & 5 & & 498 \\
\hline & 24 & 49 & 54 & 31 & 239 & 90 & 12 & 5 & & 480 \\
\hline & 25 & 26 & 68 & 54 & 41 & 45 & 10 & 18 & & 262 \\
\hline & 26 & 30 & 86 & 68 & 123 & 16 & & 58 & & 381 \\
\hline & 27 & 20 & 91 & 81 & 20 & & 2 & 41 & & 255 \\
\hline & 28 & 10 & 45 & 62 & 7 & & 2 & 89 & & 215 \\
\hline & 29 & 3 & 31 & 32 & 2 & & 2 & 119 & & 189 \\
\hline & 30 & 3 & 34 & 19 & & & & 102 & 31 & 189 \\
\hline & 31 & 3 & 24 & 10 & & & & 48 & 52 & 137 \\
\hline & 32 & & 17 & 6 & & & & 15 & 98 & 136 \\
\hline & 33 & & 32 & & & & & 5 & 134 & 171 \\
\hline & 34 & & 16 & 2 & & & & 3 & 98 & 119 \\
\hline & 35 & & 9 & & & & & & & 9 \\
\hline & 36 & & 9 & 1 & & & & & 31 & 41 \\
\hline & 37 & & 6 & & & & & & 52 & 58 \\
\hline & 38 & & 9 & & & & & & & 9
15 \\
\hline & 39 & & & & & & & & 15 & 15 \\
\hline & 40 & & & & & & & & & \\
\hline Sum & & 565 & 849 & 381 & 1279 & 836 & 448 & 511 & 511 & 5380 \\
\hline
\end{tabular}
Total biomass (tonnes) of < 20 cm horse mackerel, Trachurus capensis, and total number per 1 cm length class (in millions) per area.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Area & & \[
\begin{aligned}
& 16^{\circ} 00^{\prime}- \\
& 17^{\circ} 15^{\prime} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
17^{\circ} 15^{\prime}- \\
18^{\circ} 10^{\prime} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18^{\circ} 10^{\prime}- \\
19^{\circ} 30^{\prime} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19^{\circ} 30^{\prime}- \\
21^{\circ} 30^{\prime} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21^{\circ} 30^{\prime}- \\
23^{\circ} 00^{\prime} \\
\hline
\end{array}
\] & \[
\begin{gathered}
24^{\circ} 10^{\prime}- \\
25^{\circ} 00^{\prime} \\
\hline
\end{gathered}
\] & Sum \\
\hline Size of the area (\(\mathrm{nm}^{2}\)) & & 737 & 658 & 1316 & 2211 & 1868 & 1026 & \\
\hline Mean Sa value (\(\mathrm{m}^{2} / \mathrm{nm}^{2}\)) & & 420 & 501 & 1794 & 214 & 943 & 153 & \\
\hline Total Biomass (tonnes) & & 40650 & 41760 & 367900 & 71210 & 228650 & 14310 & \\
\hline \multirow[t]{15}{*}{No. per length class (mill.)} & 5 & & & & 4 & & & 4 \\
\hline & 6 & & & & & & & \\
\hline & 7 & & & 194 & 96 & 66 & 98 & 454 \\
\hline & 8 & & & 557 & 246 & 116 & 2077 & 2996 \\
\hline & 9 & 7 & & 231 & 313 & 909 & 470 & 1930 \\
\hline & 10 & 7 & 6 & 183 & 379 & 2215 & & 2790 \\
\hline & 11 & 4 & & 280 & 238 & 2728 & & 3250 \\
\hline & 12 & & 3 & 337 & 104 & 3306 & & 3750 \\
\hline & 13 & & 14 & 347 & 79 & 2860 & & 3300 \\
\hline & 14 & 7 & 108 & 619 & 225 & 1240 & & 2199 \\
\hline & 15 & 33 & 256 & 868 & 525 & 546 & & 2228 \\
\hline & 16 & 157 & 185 & 1207 & 446 & 149 & & 2144 \\
\hline & 17 & 201 & 242 & 1774 & 254 & 116 & & 2587 \\
\hline & 18 & 252 & 157 & 2119 & 63 & 50 & & 2641 \\
\hline & 19 & 208 & 105 & 1312 & 108 & & & 1733 \\
\hline Sum & & 876 & 1076 & 10028 & 3080 & 14301 & 2645 & 32006 \\
\hline
\end{tabular}

Annex X Reproductive status
Cape horse mackerel biological data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline AREA & \[
\begin{array}{|c|}
\hline \text { LENGTH } \\
\text { CLASS }
\end{array}
\] & NO. FISH SAMPLED & MEAN WEIGHT & JUVENILE & MALE & FEMALE & 1 & 4 & 5 & 6 & 7 \\
\hline \(25^{\circ}-23^{\circ}\) & 5.0-13.9 & 28 & 5.3 & 28 & 0 & 0 & 28 & & & & \\
\hline & 14.0-19.9 & 0 & 0 & 0 & 0 & 0 & & & & & \\
\hline & 20.0-20.9 & 0 & 0 & 0 & 0 & 0 & & & & & \\
\hline & 21.0-21.9 & 0 & 0 & 0 & 0 & 0 & & & & & \\
\hline & 22.0-22.9 & 0 & 0 & 0 & 0 & 0 & & & & & \\
\hline & 23.0-23.9 & 0 & 0 & 0 & 0 & 0 & & & & & \\
\hline & 24.0-24.9 & 0 & 0 & 0 & 0 & 0 & & & & & \\
\hline & 25.0-25.9 & 0 & 0 & 0 & 0 & 0 & & & & & \\
\hline & 26.0-26.9 & 1 & 155.5 & 0 & 1 & 0 & & & & & 1 \\
\hline & 27.0-27.9 & 1 & 202.2 & 0 & 0 & 1 & . & & & 1 & \\
\hline & 28.0-28.9 & 5 & 191.6 & 0 & 3 & 2 & & 1 & & 1 & 3 \\
\hline & 29.0-29.9 & 7 & 207.7 & 0 & 3 & 4 & & 1 & & 3 & 3 \\
\hline & 30.0-30.9 & 10 & 225.5 & 0 & 9 & 1 & & & & 3 & 7 \\
\hline & 31.0-31.9 & 10 & 240.5 & 0 & 4 & 6 & & & & 2 & 8 \\
\hline & 32.0-32.9 & 9 & 255.7 & 0 & 6 & 3 & & & & 1 & 8 \\
\hline & 33.0-33.9 & 8 & 284.1 & 0 & 5 & 3 & & 1 & & 1 & 6 \\
\hline & 34.0-34.9 & 5 & 298.1 & 0 & 2 & 3 & & & & 1 & 5 \\
\hline & 35.0-35.9 & 1 & 310.4 & 0 & 1 & 0 & & & 5 & & \\
\hline & 36.0-36.9 & 2 & 386.2 & 0 & 0 & 2 & & & & & 2 \\
\hline & 37.0-37.9 & 4 & 391.1 & 0 & 0 & 4 & & & & 1 & 3 \\
\hline & 38.0-38.9 & 0 & 0 & 0 & 0 & 0 & & & & & \\
\hline & 39.0-39.9 & 1 & 470 & 0 & 0 & 1 & & & & & 1 \\
\hline TOTAL & & 92 & * & 28 & 34 & 30 & 28 & 3 & 5 & 14 & 47 \\
\hline
\end{tabular}

Cape horse mackerel biological data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline AREA & \[
\begin{array}{|c|}
\hline \text { LENGTH } \\
\text { CLASS }
\end{array}
\] & \[
\begin{gathered}
\text { NO. FISH } \\
\text { TOTAL }
\end{gathered}
\] & MEAN WEIGHT & JUVENILE & MALE & FEMALE & 1 & 2 & 3 & 4 & 6 & 7 \\
\hline \(23^{\circ}-21^{\circ}\) & 5.0-13.9 & 13 & 4.4 & 13 & 0 & 0 & 13 & & & & & \\
\hline & 14.0-19.9 & 1 & 55.1 & 0 & 0 & 1 & & 1 & & & & \\
\hline & 20.0-20.9 & 15 & 68.4 & 0 & 7 & 8 & & 1 & 2 & & & 12 \\
\hline & 21.0-21.9 & 11 & 77.9 & 0 & 9 & 2 & & & & 1 & & 10 \\
\hline & 22.0-22.9 & 17 & 87.8 & 0 & 8 & 9 & & & 1 & & 2 & 14 \\
\hline & 23.0-23.9 & 10 & 100.8 & 0 & 5 & 5 & & & 1 & & 1 & 8 \\
\hline & 24.0-24.9 & 3 & 112.6 & 0 & 0 & 3 & 1 & & & & 2 & \\
\hline & 25.0-25.9 & 3 & 138.2 & 0 & 3 & 0 & & & & & & 3 \\
\hline & 26.0-26.9 & 14 & 145 & 0 & 4 & 10 & & & 6 & & 2 & 6 \\
\hline & 27.0-27.9 & 10 & 159.8 & 0 & 0 & 10 & & & 2 & & . & 8 \\
\hline & 28.0-28.9 & 16 & 184.7 & 0 & 4 & 12 & & & 10 & 2 & & 4 \\
\hline & 29.0-29.9 & 23 & 204.3 & 0 & 6 & 17 & & & 6 & & 7 & 10 \\
\hline & 30.0-30.9 & 0 & 0 & 0 & 0 & 0 & & & & & & \\
\hline & 31.0-31.9 & 6 & 239.3 & 0 & 4 & 2 & & & & & 2 & 4 \\
\hline & 32.0-32.9 & 2 & 285.7 & 0 & 0 & 2 & & & & & 2 & \\
\hline & 33.0-33.9 & 0 & 0 & 0 & 0 & 0 & & & & & & \\
\hline & 34.0-34.9 & 0 & 0 & 0 & 0 & 0 & & & & & & \\
\hline & 35.0-35.9 & 0 & 0 & 0 & 0 & 0 & & & & & & \\
\hline & 36.0-36.9 & 0 & 0 & 0 & 0 & 0 & & & & & & \\
\hline & 37.0-37.9 & 0 & 0 & 0 & 0 & 0 & & & & & & \\
\hline & 38.0-38.9 & 0 & 0 & 0 & 0 & 0 & & & & & & \\
\hline & 39.0-39.9 & 0 & 0 & 0 & 0 & 0 & & & & & & \\
\hline & & 144 & * & 13 & 50 & 81 & 14 & 2 & 28 & 3 & 18 & 79 \\
\hline
\end{tabular}

Cape horse mackerel biological data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline AREA & \[
\begin{array}{|c}
\text { LENGTH } \\
\text { CLASS }
\end{array}
\] & \[
\begin{gathered}
\hline \text { NO. FISH } \\
\text { TOTAL } \\
\hline
\end{gathered}
\] & MEAN WEIGHT & JUVENILE & MALE & FEMALE & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \(21^{\circ}-19^{\circ}\) & 5.0-13.9 & 84 & 6.8 & 84 & 0 & 0 & 84 & & & & & & \\
\hline & 14.0-19.9 & 98 & 42 & 7 & 36 & 55 & 4 & 13 & 12 & 2 & 1 & 13 & 48 \\
\hline & 20.0-20.9 & 9 & 69.7 & 0 & 5 & 4 & & & 1 & & & 2 & 6 \\
\hline & 21.0-21.9 & 13 & 79.7 & 0 & 8 & 5 & & 1 & 1 & & & 3 & 8 \\
\hline & 22.0-22.9 & 25 & 88.5 & 0 & 10 & 15 & & 3 & 1 & & & 7 & 14 \\
\hline & 23.0-23.9 & 14 & 98.7 & 0 & 6 & 9 & & & 1 & & & 5 & 8 \\
\hline & 24.0-24.9 & 18 & 110 & 0 & 8 & 10 & & 1 & & & & 10 & 7 \\
\hline & 25.0-25.9 & 13 & 119.2 & 0 & 7 & 6 & & & & & & 9 & 4 \\
\hline & 26.0-26.9 & 10 & 130.6 & 0 & 4 & 6 & & & & & & 5 & 5 \\
\hline & 27.0-27.9 & 5 & 154 & 0 & 1 & 4 & & & 1 & & & 1 & 3 \\
\hline & 28.0-28.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 29.0-29.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 30.0-30.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 31.0-31.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 32.0-32.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 33.0-33.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 34.0-34.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 35.0-35.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 36.0-36.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 37.0-37.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 38.0-38.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 39.0-39.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline \multicolumn{4}{|c|}{289} & 91 & 85 & 114 & 88 & 18 & 17 & 2 & 1 & 55 & 103 \\
\hline
\end{tabular}

Cape horse mackerel biological data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline AREA & \[
\begin{aligned}
& \text { LENGTH } \\
& \text { CLASS }
\end{aligned}
\] & NO. FISH TOTAL & MEAN WEIGHT & JUVENILE & MALE & FEMALE & 1 & 2 & 3 & 5 & 6 & 7 \\
\hline \multirow[t]{21}{*}{\(19^{\circ}-17^{\circ}\)} & 5.0-13.9 & 27 & 9.3 & 25 & 1 & 1 & \multirow[t]{21}{*}{\begin{tabular}{c}
26 \\
\\
1 \\
1 \\
1 \\
\\
\hline 27 \\
\hline
\end{tabular}} & 1 & & & & \\
\hline & 14.0-19.9 & 159 & 42.6 & 0 & 66 & 93 & & 14 & 15 & 47 & 28 & 55 \\
\hline & 20.0-20.9 & 17 & 63.7 & 0 & 4 & 13 & & & & & 3 & 14 \\
\hline & 21.0-21.9 & 13 & 71.1 & 0 & 6 & 7 & & 1 & & & 3 & 9 \\
\hline & 22.0-22.9 & 8 & 86.5 & 0 & 4 & 4 & & & 1 & & 4 & 3 \\
\hline & 23.0-23.9 & 11 & 96.3 & 0 & 6 & 5 & & & & & 2 & 9 \\
\hline & 24.0-24.9 & 13 & 102.1 & 0 & 8 & 5 & & & & & 6 & 7 \\
\hline & 25.0-25.9 & 16 & 115.7 & 0 & 8 & 8 & & & 1 & & 8 & 7 \\
\hline & 26.0-26.9 & 26 & 130.5 & 0 & 12 & 14 & & & 4 & & 9 & 13 \\
\hline & 27.0-27.9 & 29 & 152.9 & 0 & 11 & 18 & & & 2 & & 8 & 18 \\
\hline & 28.0-28.9 & 13 & 163.7 & 0 & 6 & 7 & & & 1 & & 5 & 7 \\
\hline & 29.0-29.9 & 17 & 182.8 & 0 & 5 & 12 & & & & & 8 & 9 \\
\hline & 30.0-30.9 & 11 & 201.2 & 0 & 3 & 8 & & & 3 & & 3 & 4 \\
\hline & 31.0-31.9 & 4 & 228.6 & 0 & 1 & 3 & & & & & & 4 \\
\hline & 32.0-32.9 & 5 & 234.4 & 0 & 1 & 4 & & & 1 & & 2 & 2 \\
\hline & 33.0-33.9 & 6 & 261.4 & 0 & 3 & 3 & & & & & 4 & 2 \\
\hline & 34.0-34.9 & 5 & 277.8 & 0 & 2 & 3 & & & & & 1 & 4 \\
\hline & 35.0-35.9 & 5 & 294.8 & 0 & 1 & 4 & & & & & 3 & 2 \\
\hline & 36.0-36.9 & 6 & 339.5 & 0 & 2 & 4 & & & 1 & & 2 & 3 \\
\hline & 37.0-37.9 & 1 & 386.6 & 0 & 0 & 1 & & & & & & 1 \\
\hline & \(38.0-38.9\)
\(39.0-39.9\) & 1 & 372.6 & 0 & 0 & 1 & & & & & 1 & \\
\hline & & 393 & * & 25 & 150 & 218 & 27 & 16 & 29 & 47 & 100 & 173 \\
\hline
\end{tabular}

\section*{Cape horse mackerel biological data}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline AREA & LENGTH
CLASS & NO. FISH TOTAL & MEAN WEIGHT & JUVENILE & MALE & FEMALE & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \(17^{\circ}-16^{\circ}\) & 5.0-13.9 & 3 & 19.6 & 3 & 0 & 0 & 3 & & & & & & \\
\hline & 14.0-19.9 & 63 & 44.3 & 4 & 36 & 23 & 4 & 3 & 25 & 13 & 2 & 2 & 14 \\
\hline & 20.0-20.9 & 15 & 62.9 & 0 & 8 & 7 & & & 5 & 1 & & 2 & 7 \\
\hline & 21.0-21.9 & 20 & 73.9 & 0 & 8 & 12 & & & 2 & 1 & & 5 & 12 \\
\hline & 22.0-22.9 & 10 & 85 & 0 & 6 & 4 & & & 2 & & & 1 & 7 \\
\hline & 23.0-23.9 & 4 & 92.6 & 0 & 4 & & & & & & & & 4 \\
\hline & 24.0-24.9 & 6 & 105.9 & 0 & 4 & 2 & & & 2 & & & & 4 \\
\hline & 25.0-25.9 & 3 & 123.9 & 0 & 0 & 3 & & & & & & & 3 \\
\hline & 26.0-26.9 & 1 & 154.1 & 0 & 1 & 0 & & & & 1 & & & \\
\hline & 27.0-27.9 & 1 & 235.3 & 0 & 0 & 1 & & & 1 & & & & \\
\hline & 28.0-28.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 29.0-29.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 30.0-30.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 31.0-31.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 32.0-32.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 33.0-33.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 34.0-34.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 35.0-35.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 36.0-36.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 37.0-37.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 38.0-38.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & 39.0-39.9 & 0 & 0 & 0 & 0 & 0 & & & & & & & \\
\hline & & 126 & 997.5 & 7 & 67 & 52 & 7 & 3 & 37 & 16 & 2 & 10 & 51 \\
\hline
\end{tabular}

\section*{Annex XI Fish condition factor}

Cape horse mackerel average condition factor for all areas.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
AVERAGE LENGTH \\
CLASS \((\mathrm{cm})\)
\end{tabular} & \begin{tabular}{c}
\(25^{\circ}-16^{\circ}\) \\
NO. FISH
\end{tabular} & \begin{tabular}{c}
AVERAGE TOTAL \\
WEIGHT \((\mathrm{g})\)
\end{tabular} & \begin{tabular}{c}
AVERAGE NET \\
WEIGHT \((\mathrm{g})\)
\end{tabular} & \begin{tabular}{c}
AV COND FAC \\
TOT. WEIGHT
\end{tabular} & \begin{tabular}{c}
AV COND FAC \\
NET WEIGHT
\end{tabular} \\
\hline 5.5 & 2 & 1.25 & 1.05 & 0.751 & 0.631 \\
6.6 & 8 & 2.45 & 2.19 & 0.852 & 0.762 \\
7.5 & 33 & 3.55 & 3.15 & 0.841 & 0.747 \\
8.5 & 34 & 5.16 & 4.54 & 0.840 & 0.739 \\
9.4 & 17 & 6.69 & 6.20 & 0.805 & 0.746 \\
10.2 & 12 & 8.53 & 7.91 & 0.804 & 0.745 \\
11.5 & 14 & 12.00 & 11.16 & 0.789 & 0.734 \\
12.3 & 11 & 14.57 & 13.61 & 0.783 & 0.731 \\
13.6 & 5 & 19.22 & 17.98 & 0.764 & 0.715 \\
14.5 & 7 & 23.64 & 22.06 & 0.775 & 0.724 \\
15.5 & 31 & 29.29 & 27.25 & 0.787 & 0.732 \\
16.5 & 37 & 35.74 & 32.85 & 0.796 & 0.731 \\
17.5 & 61 & 41.21 & 37.88 & 0.769 & 0.707 \\
18.4 & 76 & 47.57 & 44.56 & 0.764 & 0.715 \\
19.3 & 43 & 54.50 & 51.04 & 0.758 & 0.710 \\
20.4 & 42 & 66.80 & 62.12 & 0.787 & 0.732 \\
21.4 & 36 & 76.11 & 71.08 & .0 .777 & 0.725 \\
22.5 & 50 & 87.92 & 81.52 & 0.772 & 0.716 \\
23.5 & 33 & 98.88 & 91.55 & 0.762 & 0.705 \\
24.4 & 34 & 107.18 & 98.66 & 0.738 & 0.679 \\
25.3 & 31 & 118.65 & 11.26 & 0.733 & 0.687 \\
26.4 & 47 & 133.67 & 125.42 & 0.726 & 0.682 \\
27.4 & 40 & 150.14 & 140.89 & 0.730 & 0.685 \\
28.4 & 32 & 172.48 & 159.75 & 0.753 & 0.697 \\
29.4 & 36 & 195.76 & 180.40 & 0.770 & 0.710 \\
30.5 & 21 & 212.77 & 195.03 & 0.750 & 0.687 \\
31.3 & 14 & 237.54 & 211.81 & 0.775 & 0.691 \\
32.3 & 13 & 250.69 & 232.49 & 0.744 & 0.690 \\
33.4 & 14 & 274.35 & 257.36 & 0.736 & 0.691 \\
34.3 & 10 & 287.92 & 268.07 & 0.713 & 0.664 \\
35.2 & 6 & 297.42 & 280.97 & 0.682 & 0.644 \\
36.5 & 8 & 351.20 & 331.79 & 0.722 & 0.682 \\
37.6 & 3 & 384.00 & 361.30 & 0.722 & 0.680 \\
\hline
\end{tabular}```

[^0]: * Unadjusted underestimate due to fish off the bottom.

[^1]: spectiss
 trachurus capensis
 Serluccius capentis, male
 Sufflogobius bibarbatu Merluccius capensis, female
 Herluccius capensis
 total

