# **CRUISE REPORT**

# Cruise KB 2019602

# with R.V. Kristine Bonnevie

1-4 Feb 2019

**Working Areas:** 

## Masfjorden, Fensfjorden

Geophysical Institute, University of Bergen Compiled from inputs of GEOF337 students, spring 2019 Version: 1 February 2019

## 1. Background

The cruise on board the Research Vessel Kristine Bonnevie was undertaken as a part of the GEOF337, Physical Oceanography of Fjords course offered at the Geophysical Institute (GFI), University of Bergen. The site of study was Masfjorden and Fensfjorden. The data set collected aimed to address the processes related tides and mixing processes in Masfjorden, ocean-fjord exchange mechanisms and the observed deoxygenation of the inner basis. The students become familiar with typical and state-of-the-art measurement systems, including ship-based measurements (CTD, thermosalinograph and Ship-ADCP) as well as moored instruments, turbulence measurements (MSS) and measurements of oxygen concentrations in collected water samples. The students are also encouraged to participate in planning of the cruise and sampling, and contributed substantially to the cruise report.

In total, 4 moorings were deployed consisting of current meters, current profilers, and temperature, salinity, oxygen and pressure loggers, which will collect data for one month or one year duration. During the cruise, data collection was primarily by using the ship's CTD and vessel-mounted current profiling system and GFI's microstructure profiler.

|                        | Name                           | Institute | Responsibility |
|------------------------|--------------------------------|-----------|----------------|
| Scientists             | Elin Darelius, elin@gfi.uib.no | UIB       | Cruise leader  |
|                        | Mirjam Glessmer                | UIB       | Watch leader   |
| Assistants             | Stefanie Semper                | UIB       | Watch leader   |
|                        | Nadine Steiger                 | UIB       | Moorings       |
| Students               | Roy Andreas Nilsen             | UIB       |                |
|                        | Jori Neteland-Kyte             | UIB       |                |
|                        | Øystein Breiteig               | UIB       |                |
|                        | Aleksander Dürr Libæk          | UIB       |                |
|                        | Sonja Wahl                     | UIB       |                |
|                        | Evangelina Efstathiou          | UIB       |                |
|                        | Helene Asbjørnsen              | UiB       |                |
|                        | Julie T. Kvalheim              | UiB       |                |
| Technical<br>personnel | Kristin Jackson                | UIB       | Chemistry      |
| personner              | Algot Peterson                 | UIB       | Moorings, MSS  |

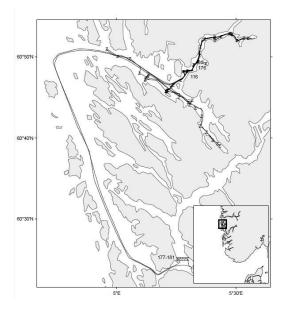
## 2. Cruise participants

**Table 1: Cruise participants** 

## 3. Cruise Overview (Elin)

During cruise KB2019602 to Masfjorden we deployed 4 moorings, made 65 CTD-stations and 54 MSS-cast. The moorings, MF\_sill and MF\_inner were deployed to monitor the exchange of water across the main sill of Masfjorden (79 m) and the evolution of hydrography and oxygen in the deep inner basin respectively. These moorings will be in the water for a year. The two small "mini-moorings", measuring only pressure and temperature are placed on either side of the sill to monitor sea level (tides) until the next student cruise (KB2019604) that will take place end of February, 2019. Along fjord CTD-section were taken a) along Masfjorden (Section A) and along Fensfjorden (Section C) and across Masfjorden (Section B), Fensfjorden (Section D &E) and across Byfjorden (Section F). MSS-section was taken along Section A (extending across Fensfjorden) and a 12h time series was occupied in the sill area.

The inner, northern branch of Masfjorden (Haugsværfjorden) was covered with sea ice preventing access to that part of the fjord.


Water samples for calibration of the oxygen sensors of the CTD were taken at 8 stations, and these were analyzed on board. In addition to the one bottle that HI takes at the bottom of each station, we took 36 water bottles for calibration of the conductivity sonde. These bottles were analyzed at the Geophysical Institute by Kristin and the students a few days after the cruise.

The cruise track is shown in Figure 1.

The thermosalinograph, the shipADCP and the weatherstation run continuously throughout the cruise.

A detailed cruise narrative is given in Appendix A.

Figure 1: Cruise track



## 4. Environmental conditions

The weather was calm with relatively low winds and low temperatures during the entire cruise (Figure 2). The tidal predictions obtained from <u>www.kartverket.no</u> are shown in Figure 3. Tidal amplitudes are expected to be about 80-100 cm.

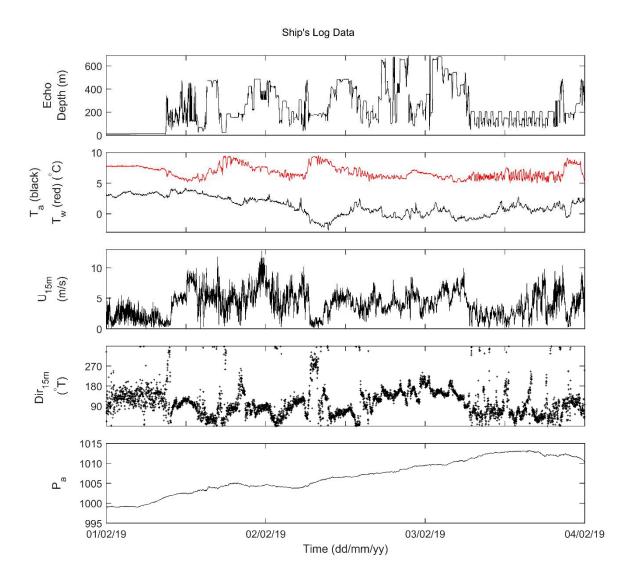



Figure 2: a) Echo depth b) air (red) and water (black) temperature, wind c) strength and d) direction and e) pressure logged by the ship.

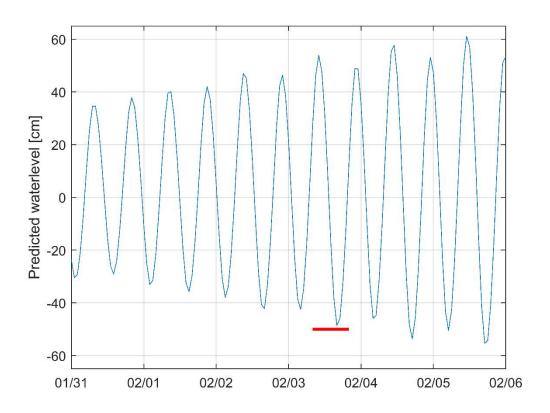



Figure 4: Tidal predictions for Masfjorden (local times). The red line shows the duration of the MSS-time series. (data from www.kartverket.no)

## 5. Moorings

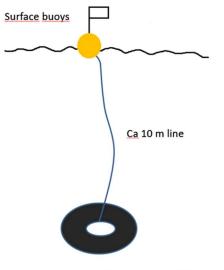
Two full moorings – MF\_sill and MF\_inner were deployed during the cruise, see Fig 1 for location. Drawings of the moorings are shown in appendix D, deployment details are given in Table 1 and instrumentation details in Table 2. Results from mooring triangulation is shown in appendix E.

|                    | MF_sill                  | MF_inner                 |
|--------------------|--------------------------|--------------------------|
| Position:          | 60° 48.213'N 5° 17.875'E | 60° 52.213'N 5° 22.100'E |
| Time of deployment | 1 Feb 2019, 13:47 UTC    | 1 Feb 2019, 16:30 UTC    |
| Echodepth:         | 70 m                     | 466 m                    |
| Acoustic release   | Sn: 1224 Arm: 089B       | Sn: 2424 Arm: 2424       |

| Depth<br>(m) | Height<br>(m) | Instrument | Serial<br># | Sampling<br>interval (min) | Comments                        |
|--------------|---------------|------------|-------------|----------------------------|---------------------------------|
| 200          | 260           | SBE37ODO   | 12340       |                            |                                 |
| 275          | 185           | SBE37 CTD  | 8974        |                            |                                 |
| 350          | 110           | SBE37ODO   | 12338       |                            |                                 |
| 450          | 10            | SBE37ODO   | 12339       |                            |                                 |
| 455          | 5             | AR         | 2424        |                            | ARM: 1BDD<br>REL: ARM +<br>OA55 |

Table 1: Instrument details mooring MF\_inner.

#### Table 2: Instrument details mooring MF\_outer.


| Depth<br>(m) | Height<br>(m) | Instrument | Serial # | Sampling<br>interval (min) | Comments  |
|--------------|---------------|------------|----------|----------------------------|-----------|
| 15           | 55            | Seaguard   | 1050     |                            |           |
| 25           | 45            | SBE56      | 1946     | 5                          |           |
| 45           | 25            | SBE37      | 5446     |                            |           |
| 65           | 5             | RDCP600    | 229      |                            |           |
| 66           | 4             | SBE37      | 8975     |                            |           |
| 67           | 3             | AR         | 1224     |                            | ARM: 089B |
|              |               |            |          |                            | ARM+0A55  |

#### Triangulation

The moorings were triangulated using the deck-unit of the acoustic release, and the results are shown in Appendix E.

## «Mini-moorings»

During the cruise it was deployed two mini-moorings. They were positioned on both sides of the shallowest sill in Masfjorden. The moorings were made with a buoy that is floating in the ocean surface. The buoy is attached to a rope that is roughly 10 meters, which is attached to a tire with weights. The mooring were deployed in shallow water because of the short length of the rope, where the tire is located on the bottom. To the tire there was attached an instrument, called SBE-39, that measures temperature and pressure. The setup of the mooring in shown in figure 5.



Tyre with weight + SBE39 (measures TP)

Figure 5: Drawing of the mini-moorings.

| Mooring                 | Serial<br>number | Position [lat] | Position [lon] | Date<br>[dd.mm.yy] | Time of<br>deployment<br>[hh:mm] |
|-------------------------|------------------|----------------|----------------|--------------------|----------------------------------|
| SBE-39<br>(orange tire) | 6149             | 60.820375 °N   | 005.314952 °E  | 04.02.19           | 09:29 UTC                        |
| SBE-39<br>(black tire)  | 3282             | 60.796876 °N   | 005.279792 °E  | 04.02.19           | 12:28 UTC                        |

The positions of the mini-moorings are shown in the table below:

### 6. Thermosalinograph

The ships thermosalinograph (Sea-Bird SBE21 serial number: 2135836-3238 Sea-Bird SBE21) was running throughout the cruise recording temperature and salinity of the surface water. The instrument was last calibrated in January, 2006.

## 7. CTD profiling

From a CTD you can get information about the physical quantities of sea water such as conductivity, temperature and depth. The conductivity tells us something about how much salt there is in the water, temperature is temperature and the depth is measured by pressure. These parameters are constantly

measured when the CTD moves through the water column. A CTD operator gets information in real time on a computer about the parameters the CTD measures. At the bottom of every station, we take a water sample. This is done in order to calibrate the conductivity sensor. We can also take water samples on different depths when the CTD is ascending to get information on oxygen, nutrients, etc. The operator can fire the Niskin bottles from the computer.

The CTD used on this cruise is a model SBE9 plus with serial number 09P1258. Mounted on the CTD is a Niskin Bottle rosette with model name SBE 32 and serial number 32-1109. Table 5 shows the other types of sensors that are mounted on the CTD. Also in this table is serial number for every sensor and when the sensor was last calibrated.

A total of 65 CTD stations were done on this cruise. Section A, B and F were done in Masfjorden whereas section C, D and E were done in Fensfjorden.

Listed in appendix B is a complete list of all of the CTD stations on the cruise and Appendix F lists the water samples obtained. Figure 6 shows a map of all of the CTD stations occupied. This map also includes the positions of the two moorings we deployed, and show where we did oxygen sampling. We also collected water for salinity sampling at the same places as oxygen measurements, see . The salinity measurements were done at GFI when we got back from the cruise. In Figure 7 is a cross section of Masfjorden (section A) displaying temperature in the upper panel and salinity in the lower panel.

On our way back to Bergen, we had a special request from an Msc student on land to make a cross section in Byfjorden. We did 5 stations and in the CTD log these stations are noted as BF1-5.

#### Problems encountered with the CTD

The CTD worked perfectly for almost every position. On one station we had to fire all of the bottles because we had a suspicion that one of the bottles were leaking. We identified the leaking bottle and we could therefore replace it with a new one. Also, at one station, two of the bottles wouldn't close. This happened only one time during the cruise.

On section D, we planned to do 4 measurements (D1-D4). However, we did just 3 measurements on this section (D2-D4). We decided together with the captain to skip D1 because of safety reasons due to strong winds, snow reducing the visibility, and the fact that we were already pretty close to land at night time on station D2.

| Sensor                      | S/N     | Last calibrated   |
|-----------------------------|---------|-------------------|
| Primary temp. sensor        | 03-5884 | 19. October 2017  |
| Secondary temp. sensor      | 03-4306 | 19. October 2017  |
| Primary conductivity sensor | 04-4386 | 14. December 2017 |

Table 5: Types of sensor mounted on the CTD with its serial number and when it was last calibrated.

| Secondary conductivity sensor       | 04-2860    | 14. November 2017 |
|-------------------------------------|------------|-------------------|
| Pressure sensor                     | 134950     | 17. November 2015 |
| Submersible pump                    | 05-8402    | N/A               |
| Oxygen sensor                       | 43-0633    | 31. October 2017  |
| Fluormeter, Wet Labs ECO-AFL/FL     | FLRTD-4131 | 2. October 2015   |
| PAR sensor, Biospherical QCP2300-HP | 70656      | 13. January 2017  |
| SPAR sensor, Biospherical QCR-2200  | 20539      | 13. January 2017  |

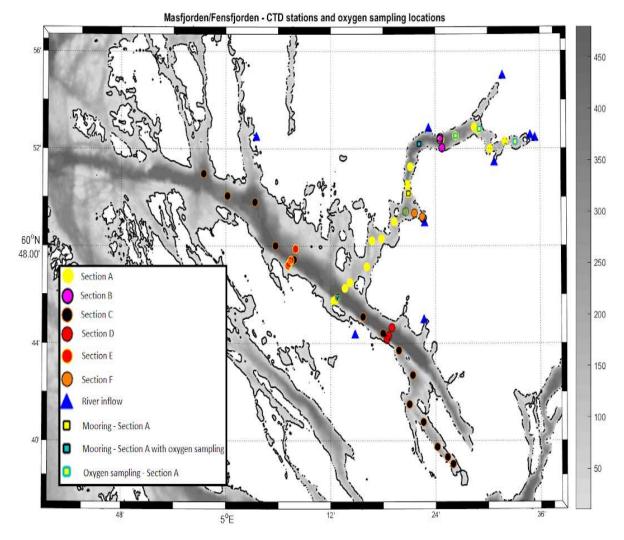
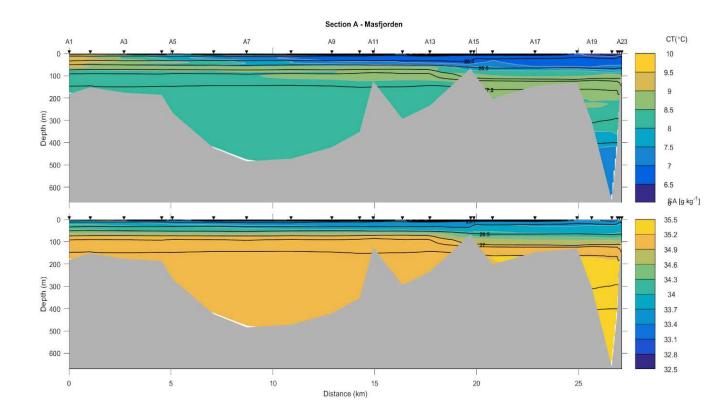




Figure 6: CTD-stations occupied in Mas and Fens fjorden during KB2019604.



Figur 7: Section A in Masfjorden, with a cross section of Fensfjorden on the right side of the panels. The top panel shows temperature and the lower panel shows salt content in the water. Isopycnals are shown in both panels.

### 7.1 Calibration of the conductivity sensor

Water samples for calibration of the conductivity cell were collected a) at the bottom of every station for HI and b) at selected stations for UiB. Due to a misunderstanding, many of the UiB samples were filled on HI bottles and had to be emptied.

**UIB samples**: In total there were 14 UiB samples that were analysed by the students upon return. The median difference in conductivity (CTD-water bottle) was 0.008 and the mean 0.01 mS/cm.

**HI samples**: In total there were 57 HI samples that were analysed at HI. The results are show in Figure 7.1. The difference is larger for shallower depths, presumably because these samples were obtained in more stratified water. The data suggest a correction of -0.011 mS/cm. The correction has been applied to the data in the matlab structure. Data in the cnv-files are uncorrected.

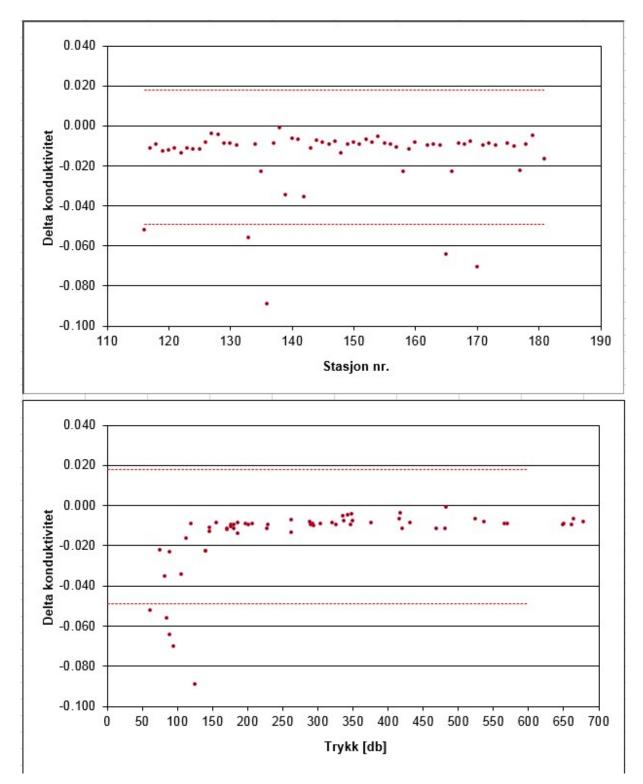



Figure 7.1: Results from the HI-samples. Difference (bottle - CTD) in conductivity as a function of station number (upper panel) and as afunction of bottom depth (lower panel).

## 8. Current Profiling using Vessel-mounted ADCP (VMADCP)

The vessel-mounted Acoustic Doppler Current Profiler was running throughout the cruise using standard settings: narrowband mode, with 50 bins of length 8.0 m and blanking distance 4.0 m. Narrowband mode causes a long range for the measurements, but with lower resolution. Sampling rate was set to 1.10 seconds.

Processing of data is done automatically by the ADCP-system on board. It uses CODAS (Common Ocean Data Access System) to calculate ocean velocities from ADCP measured velocities, positions, and heading.

## 9. Microstructure Profiling

For measuring the ocean structure, we used an instrument called MSS90. The instrument is manufactured by Sea & Sun Technology and the different sensors that are attached is listed in table 6. The depth range for the MSS is down to 500 meters depth. The instrument is a free-fall instrument, which means when it is deployed it will go down the water column in free-fall.

| Instrument/sensor | Туре     | Serial number | Dimension | Last calibrated |
|-------------------|----------|---------------|-----------|-----------------|
|                   |          |               |           |                 |
| MSS90             | -        | MSS047        | -         | 20.05.2010      |
| Temperature NTCHP | NTC FP07 | -             | Celsius   | 12.05.2010      |
| Shear1            | PNS6 0   |               | -         | 20.05.2010      |
| Shear2            | PNS6     | 068           | -         | 20.05.2010      |
| Pressure          | PA7-50   | -             | dbar      | 18.05.2010      |
| Temperature       | PT100    | -             | Celsius   | 12.05.2010      |
| Conductivity      | Small    | -             | mS/cm     | 18.05.2010      |
| Acceleration      | -        | -             | $m/s^2$   | 10.05.2010      |
| Temperature NTC   | NTC FP07 | -             | Celsius   | 12.05.2010      |

| Acceleration in X | ADXL 203 | - | G | 10.05.2010 |
|-------------------|----------|---|---|------------|
| Acceleration in Y | ADXL 203 | - | G | 10.05.2010 |

During the cruise to Masfjorden, we did MSS measurements on two of the days. On the first day we took MSS stations along the CTD section A. In figure 8 we can see the position of the 23 casts we took the first day. The MSS casts are shown as blue stars. In the figure is also the CTD stations shown, so that we can compare the positions between the stations. The depth ranges on the section casts varied between 86 and 500 meters. On the second day we took MSS measurements on three positions over time, so we have then ended with a time series for the three different positions. The positions for the second day are shown in figure # as dark red stars. For the time series stations, we took one station before the sill, one on the sill and the last one on the other side of the sill. Started with number 1, then number 2 and thereafter number 3, before we started at number 1 again. In total we ended up with 10 laps, as described over. The depth ranges for the lap stations varied between 83 and 187 meters. More details about the positions and depths, can be read in the MSS log, in the appendix G.

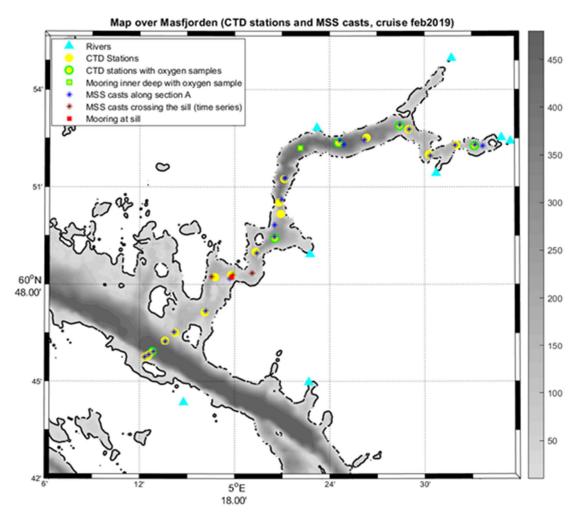



Figure 8 - Map over Masfjorden and the MSS casts/CTD stations along section A.

The data collected with the MSS are processed in Matlab and we can end up with figures and plots such as this turbulence plot shown in figure 8. The figure below shows the turbulence from Cast 15, for the depth between 20 and 40 meters.

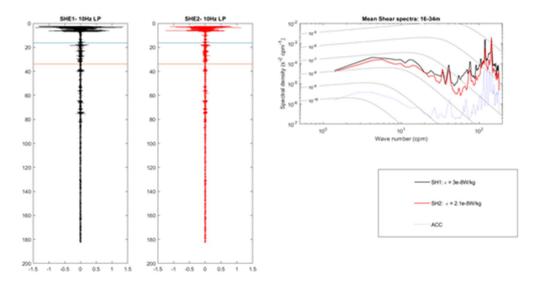



Figure 9 - Turbulence from the measured shear in the ocean.

#### Set-up of the MSS and data processing

The MSS was lower from the starboard of the ship by a winch with cable. The operator of the winch paid out slack on the cable such that the MSS was able to sink unhindered. The ideal vertical speed of the MSS is 0.6-0.7 m/s. From the MSS we received data on a laptop in the other room. We had two persons monitoring the depth of the MSS because the operator didn't have access to the monitor. There was a signal system between the different rooms and was used to tell the operator to stop giving out slack on the cable or to start reel in the cable, to avoid it hitting the bottom.

On the computer it was recorded RAW data from the MSS by using the Standard Data Acquisition program (SDA). The program showed pressure, acceleration and the tilt during the measurement. After the recording we processed the data and started analysis using Matlab. From the shear sensors obtained data for calculating the dissipation rate. The right side of the turbulence plots, showed in figure 9, is usually not considered due to noise. The left side of the data shows more the dissipation rate where it is following the Nasmyth spectrum.

#### Problems encountered with MSS during the cruise

During the cruise we got some issues during the usage of the MSS. In the beginning we had some problem with getting the instrument to fall with the right speed, so we used the five first casts to change a bit about the weight and buoyancy on the MSS. After we removed three floating elements and three metal rings, we ended up with 9 floating elements and five metal rings. After this the instrument was going with the right speed. Further on we had some problem with the connection between the instrument and the logging program, so we had to reset the program several times during the measurements. Sometimes it stopped recording on the way up, and sometimes it wouldn't record at all in the beginning. We also had to change the blue box which gives the logging program on the computer the signal from the MSS. Strong current we also experienced on a couple of the casts, and then we lost the connection.

The issues with the connection was usually solved by turning off the blue box before we closed the logging program on the computer. Then we turned on the box again and then opened the logging program.

#### 10. Oxygen sampling

During the cruise, 96 water samples were taken at 8 CTD stations (Figure 6) for analyzing dissolved oxygen concentration in several depths. The oxygen samples are used to study ocean ventilation and the movement of water masses. CTD section-A with uncalibrated dissolved oxygen data is shown in Figure 10.

Of the 96 samples, 23 duplicates are included in the analysis. The dissolved oxygen is determined by using the colorimetric titration of discrete water samples developed by Winkler in 1888. Each day, 4 blanks and 4 standards based on standard potassium iodate were measured. Two of the 96 samples got over-titrated. The measurement uncertainty depends on the thermal expansion of bottle volume, varying drop size of thiosulfate, recording of the amount of thiosulfate added regarding a 25 mL burette, and recording of when the solution becomes colorless. The estimate of the uncertainty was set to 0.02 ml L<sup>1</sup>.

The dissolved oxygen from the colorimetric titration has a significantly different concentration compared to the CTD dissolved oxygen sensor (Figure 11). The upper panel of the figure shows a decreasing offset with depth compared with the stippled line. The maximum offset from the regression line in the lower panel of Figure 11 is 0.29 ml L<sup>4</sup>, and the average offset from the stippled zero-line is 0.30 ml L<sup>4</sup>. Both values lie outside of the measurement uncertainty of 0.02ml L<sup>4</sup> indicated by blue stippled lines. The number of values within the measurement uncertainty (blue stippled lines) is 8, while the rest 88 samples lie outside of the interval. To be sure there is a decreasing error with depth, there need to be more oxygen samples in the deeper part of the fjords.

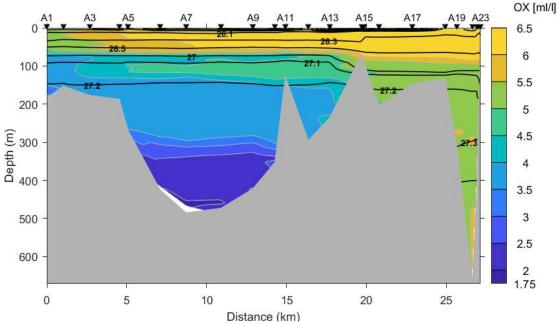



Figure 10: Contours of oxygen concentration for section-A. Potential density anomaly contours are shown in black. Station A1 is the innermost station in Masfjorden, and A23 is the outermost station lying in Fensfjorden. Section A is shown on map in Figure 6. The data shown are not corrected.

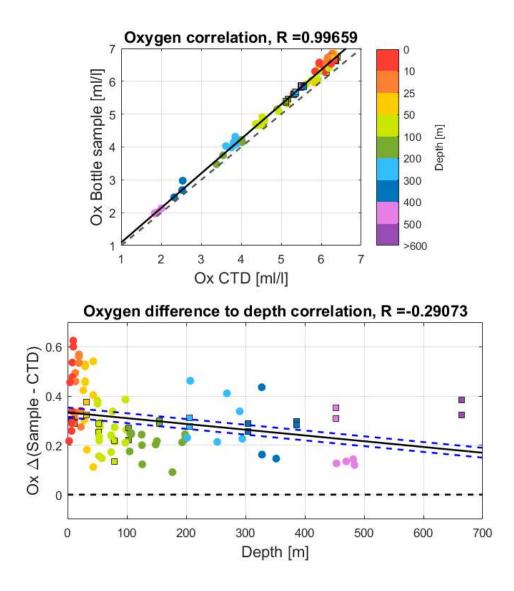



Figure 11: (upper panel) Scatter plot of dissolved oxygen samples compared to oxygen measured by CTD with color according to depth. A regression line for the scatter points is drawn in black, and a stippled line in gray to indicate an offset between the CTD-measured and the sampled dissolved oxygen. The round and square markers are data from Masfjorden and Fensfjorden, respectively. (lower panel) Difference in oxygen concentration between sampled and CTD-measured compared with depth. The measurement uncertainty of  $0.02 \text{ ml } L^4$  is shown by the blue stippled line parallel to the black regression line.

## **Appendix A: Cruise Narrative**

#### <u>1 February</u>

09:00 Left Bergen

14:10 CTD-station 116 at mooring position. "Grey box" from bridge did not appear – so weather information not to be trusted. HI water sample only.

13:47 Mooring "Masfjorden sill" was deployed at 5 17.875 60 48.231 in 70 m deep water.

- 15:20 CTD-station 117 at mooring position.
- 16:30 Mooring "Masfjorden inner" was deployed at 5 22.100 60 52.213
- 18:00 Put Nadine ashore
- 18:13 Started section A (Along Masfjorden), station: A1 A6

22:01 Started transect section B (across the fjord), station: B1  $\rightarrow$  B2/A7 (middle station, where the name are the same station)  $\rightarrow$  B3

#### **2** February

- 01:05 Continued on transect A (along Masfjorden), station: A8-A17
- 05:20 started to steam back to head of the fjord
- 07:50 Started MSS with Section A, from inner Masfjorden.
  - Cast 1: Removed 2 floating elements before cast. Limit of 50 meter above bottom.
  - Cast 2: Removed 1 floating element before cast. Limit of 50 meter above bottom.
  - Cast 3: Removed 1 metal ring before cast. Limit of 50 meter above bottom.
  - Cast 4: Removed 2 metal rings before cast, limit of 70 meter above bottom
  - Cast 5: We have in total 9 floating elements (including all) and 5 metal rings before cast. Limit of 50 meter above, stopped 30 meter above bottom
  - Cast 6: No changes. Limit of 70 meter above bottom.
  - Cast 7: No changes. Limit of 100 meter above the bottom.

Struggles with the logging program. Restarted the program and tried to restart the computer as well.

Lesson learnt: Turn on/off the blue box before opening/closing the software.

Did not take the 2 CTD's in the northern arm of Masfjorden (Haugværfjorden), because of sea ice.

- 10:32 On our way to transect B, to take MSS for section B. Starts at B1.
- 12:00 18:00:

Casts with MSS along transect A (8-18), replaced the blue (logger) box due to failing communication

At 12:50 CTD with oxygen samples, nutrient samples, salinity samples and Carbon samples taken at B2/A7.

Oxygen sample analysis of CTD water samples of 01.02.19

18:00 - 24:00

MSS at cast 19 - 23, replaced the blue (logger) box at last station due to failing communication.

Finished oxygen sample analysis of CTD water samples from 01.02.19.

Finishing the last three stations at section A with CTD: starting with A21, ending at A19.

A21: We fire all bottles at one depth to check the niskin bottles for leakage. Bottle on position #4 did not close, the string was tightened to fix it.

Starting section C, time 22:10

#### **3 February**

23:00 – 05:00 UTC Outreach plan: strategy And CTD along Transect C 05:45 UTC Start steaming back into Masfjorden

07:10 UTC Started MSS measurements around the sill

Programmed SBE39 for use in the small moorings

18.30 UTC Stopped MSS measurements.

19:15 UTC start CTD repeat stations on transect A (A12 & A1-A5), took oxygen samples at A12 and A5

23:15 UTC end repeat stations on transect A

#### **4** February

01:51 UTC start transect D (Fensfjorden across, inner part)

03:48 UTC start transect E (Fensfjorden across, outer part)

05.50 UTC start transect A (Fensfjorden across, towards Masfjorden).

06:03 UTC Changed name of old A21 to A22, because we have added another station in between old A21 and A20.

08:00 UTC prepare mini-moorings and triangulation

11:00-17:00 UTC

CTD with water samples at station F3/A12 (salinity at all depths)

Deployed the mini-moorings and did triangulation of deep mooring

Learned how to splice a rope

cleaning of labs etc.

more oxygen sample titrations

17:39 Started with CTD stations in Byfjorden, section BF1-BF5.

19:06 Finished with the last CTD station!

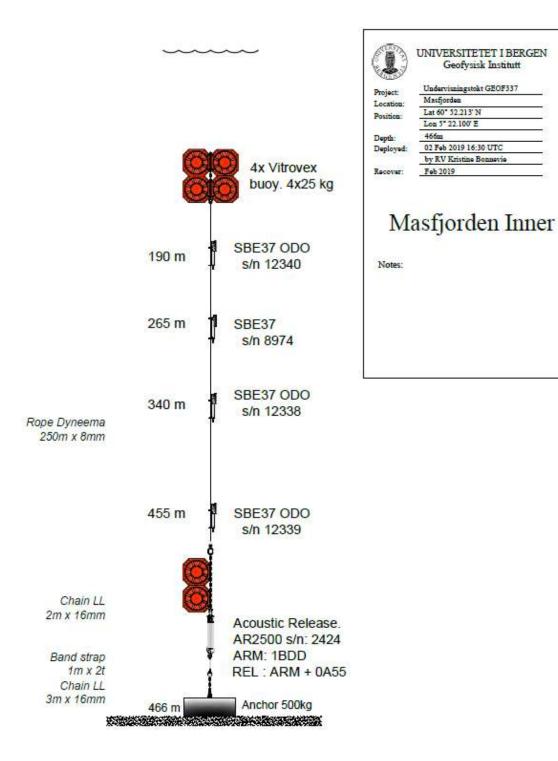
## **Appendix B:** List of CTD stations

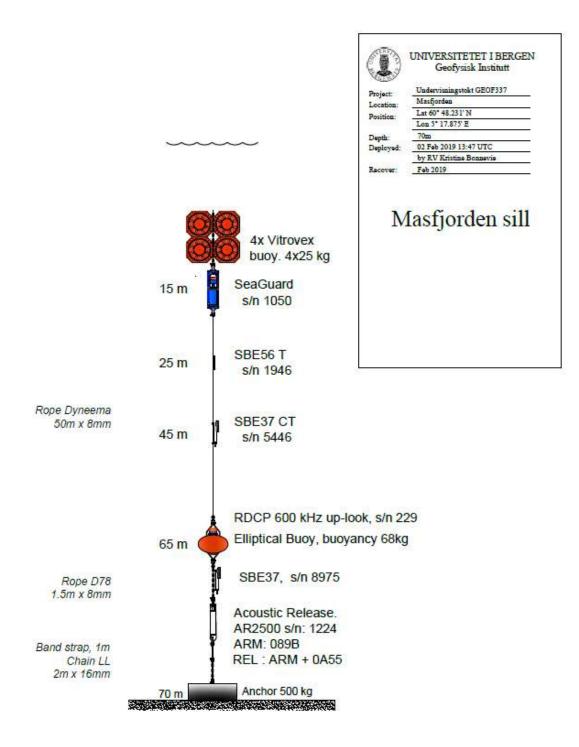
| Vessel | Kristine Bonnevie |
|--------|-------------------|
|        | KB 2019           |
| Cruise | 602               |

| <u>0</u> 4 | CTD          | Da   | ate | ι   | JTC   | Depth | Latit | ude/ N | Longi | tude/ E | W. Samples |
|------------|--------------|------|-----|-----|-------|-------|-------|--------|-------|---------|------------|
| St.name    | File<br>Name | year | mon | day | hh:mm | m     | deg   | min    | deg   | min     | y/n        |
| A14*       | 116          | 2019 | 2   | 1   | 14:10 | 69    | 60    | 48.21  | 5     | 17.81   | n          |
| A8**       | 117          | 2019 | 2   | 1   | 15:20 | 470   | 60    | 52.21  | 5     | 22.18   | у          |
| Al         | 118          | 2019 | 2   | 1   | 18:13 | 186   | 60    | 52.27  | 5     | 33.17   | у          |
| A2         | 119          | 2019 | 2   | 1   | 19:32 | 144   | 60    | 52.29  | 5     | 32.01   | n          |
| A3         | 120          | 2019 | 2   | 1   | 19:03 | 189   | 60    | 52.00  | 5     | 30.28   | n          |
| A4         | 121          | 2019 | 2   | 1   | 20:39 | 183   | 60    | 52.78  | 5     | 29.00   | n          |
| A5         | 122          | 2019 | 2   | 1   | 20:58 | 269   | 60    | 52.89  | 5     | 28.44   | n          |
| A6         | 123          | 2019 | 2   | 1   | 21:29 | 425   | 60    | 52.52  | 5     | 26.34   | n          |
| B1         | 124          | 2019 | 2   | 1   | 22:01 | 217   | 60    | 52.03  | 5     | 24.76   | n          |
| B2 / A7    | 125          | 2019 | 2   | 1   | 22:21 | 485   | 60    | 52.36  | 5     | 24.56   | у          |
| B3         | 126          | 2019 | 2   | 1   | 23:47 | 376   | 60    | 52.28  | 5     | 24.34   | n          |
| A9         | 127          | 2019 | 2   | 2   | 00:49 | 405   | 60    | 51.15  | 5     | 21.80   | n          |
| A10        | 128          | 2019 | 2   | 2   | 01:37 | 344   | 60    | 50.32  | 5     | 20.49   | n          |
| A11        | 129          | 2019 | 2   | 2   | 02:13 | 120   | 60    | 50.10  | 5     | 20.55   | n          |
| A12/F3     | 130          | 2019 | 2   | 2   | 02:42 | 290   | 60    | 49.26  | 5     | 20.33   | n          |
| A13        | 131          | 2019 | 2   | 2   | 03:21 | 225   | 60    | 49.1   | 5     | 19.20   | n          |
| A14        | 133          | 2019 | 2   | 2   | 03:44 | 95    | 60    | 48.29  | 5     | 17.78   | n          |
| A15        | 134          | 2019 | 2   | 2   | 04:00 | 198   | 60    | 48.30  | 5     | 16.46   | n          |
| A16        | 135          | 2019 | 2   | 2   | 04:20 | 139   | 60    | 47.9   | 5     | 16.80   | n          |
| A17        | 136          | 2019 | 2   | 2   | 04:50 | 124   | 60    | 46.31  | 5     | 14.14   | n          |
| A18        | 137          | 2019 | 2   | 2   | 05:03 | 309   | 60    | 46.26  | 5     | 13.62   | n          |
| B2/A7      | 138          | 2019 | 2   | 2   | 11:50 | 478   | 60    | 52.22  | 5     | 24.41   | у          |
| A22        | 139          | 2019 | 2   | 2   | 19:31 | 115   | 60    | 45.75  | 5     | 12.363  | n          |
| A20        | 140          | 2019 | 2   | 2   | 19:48 | 446   | 60    | 45.82  | 5     | 12.58   | n          |
| A19/C10    | 141          | 2019 | 2   | 2   | 20:18 | 654   | 60    | 45.92  | 5     | 12.81   | у          |
| C1         | 142          | 2019 | 2   | 2   | 22:12 | 87    | 60    | 39.04  | 5     | 25.99   | n          |
| C2         | 143          | 2019 | 2   | 2   | 22.32 | 157   | 60    | 39.32  | 5     | 25.36   | n          |
| C3         | 144          | 2019 | 2   | 2   | 22:44 | 272   | 60    | 39.74  | 5     | 24.17   | n          |
| C4         | 145          | 2019 | 2   | 2   | 23:20 | 289   | 60    | 40.50  | 5     | 22.27   | n          |
| C5         | 146          | 2019 | 2   | 2   | 23:50 | 207   | 60    | 41.31  | 5     | 21.1    | n          |
| C6         | 147          | 2019 | 2   | 3   | 00:19 | 347   | 60    | 42.42  | 5     | 21.23   | n          |
| C7         | 148          | 2019 | 2   | 3   | 00:55 | 185   | 60    | 43.42  | 5     | 19.49   | n          |
| C8         | 149          | 2019 | 2   | 3   | 01:20 | 643   | 60    | 44.26  | 5     | 18.1    | n          |
| С9         | 150          | 2019 | 2   | 3   | 02:00 | 671   | 60    | 45.70  | 5     | 15.43   | n          |
| C11        | 151          | 2019 | 2   | 3   | 02:58 | 564   | 60    | 47.27  | 5     | 07.51   | n          |
| C12        | 152          | 2019 | 2   | 3   | 03:40 | 525   | 60    | 48.1   | 5     | 5.41    | n          |
| C13        | 153          | 2019 | 2   | 3   | 04:20 | 538   | 60    | 49.48  | 5     | 3.19    | n          |
| C14        | 154          | 2019 | 2   | 3   | 04:52 | 335   | 60    | 50.07  | 5     | 0.21    | n          |
| C15        | 155          | 2019 | 2   | 3   | 05:33 | 435   | 60    | 50.97  | 4     | 57.48   | n          |
| A12/F3     | 156          | 2019 | 2   | 3   | 19:14 | 299   | 60    | 49.41  | 5     | 20.50   | Y          |
| Al         | 157          | 2019 | 2   | 3   | 21:14 | 187   | 60    | 52.28  | 5     | 33.10   | n          |
| A2         | 158          | 2019 | 2   | 3   | 21:38 | 153   | 60    | 52.28  | 5     | 32.08   | n          |

| A3     | 159 | 2019 | 2 | 3 | 22:01 | 181 | 60 | 51.98 | 5 | 30.32 | n |
|--------|-----|------|---|---|-------|-----|----|-------|---|-------|---|
| A4     | 160 | 2019 | 2 | 3 | 22:27 | 197 | 60 | 52.80 | 5 | 29.04 | n |
| A5     | 161 | 2019 | 2 | 3 | 22:48 | 273 | 60 | 52.90 | 5 | 28.41 | У |
| D4     | 162 | 2019 | 2 | 4 | 01:51 | 344 | 60 | 44.67 | 5 | 19.01 | n |
| C8/D3  | 163 | 2019 | 2 | 4 | 02:15 | 642 | 60 | 44.32 | 5 | 18.61 | n |
| D2     | 164 | 2019 | 2 | 4 | 02:45 | 181 | 60 | 44.15 | 5 | 18.43 | n |
| D1     | х   | х    | х | x | х     | x   | х  | x     | х | x     | х |
| E1     | 165 | 2019 | 2 | 4 | 03:48 | 89  | 60 | 47.21 | 5 | 07.16 | n |
| E2     | 166 | 2019 | 2 | 4 | 03:58 | 89  | 60 | 47.28 | 5 | 07.24 | n |
| C11/E3 | 167 | 2019 | 2 | 4 | 04:13 | 566 | 60 | 47.42 | 5 | 07.46 | n |
| E4     | 168 | 2019 | 2 | 4 | 04:43 | 325 | 60 | 47.87 | 5 | 08.01 | n |
| E2     | 169 | 2019 | 2 | 4 | 05:10 | 328 | 60 | 47.28 | 5 | 07.24 | n |
| A22    | 170 | 2019 | 2 | 4 | 05:50 | 100 | 60 | 45.74 | 5 | 12.39 | n |
| A21    | 171 | 2019 | 2 | 4 | 06:03 | 245 | 60 | 45.78 | 5 | 12.49 | n |
| A20    | 172 | 2019 | 2 | 4 | 06:20 | 278 | 60 | 45.80 | 5 | 12.57 | n |
| A19    | 173 | 2019 | 2 | 4 | 06:55 | 668 | 60 | 45.89 | 5 | 12.82 | У |
| F1     | 174 | 2019 | 2 | 4 | 09:55 | 82  | 60 | 49.21 | 5 | 22.50 | n |
| F2     | 175 | 2019 | 2 | 4 | 10:10 | 168 | 60 | 49.35 | 5 | 21.58 | n |
| F3/A12 | 176 | 2019 | 2 | 4 | 10:29 | 299 | 60 | 49.39 | 5 | 20.57 | У |
| BF1    | 177 | 2019 | 2 | 4 | 17:39 | 84  | 60 | 25.06 | 5 | 15.28 | n |
| BF2    | 178 | 2019 | 2 | 4 | 17:54 | 298 | 60 | 25.08 | 5 | 15.93 | n |
| BF3    | 179 | 2019 | 2 | 4 | 18:14 | 350 | 60 | 25.05 | 5 | 16.59 | n |
| BF4    | 180 | 2019 | 2 | 4 | 18:36 | 283 | 60 | 25.08 | 5 | 17.28 | n |
| BF5    | 181 | 2019 | 2 | 4 | 18:55 | 110 | 60 | 25.07 | 5 | 17.88 | n |

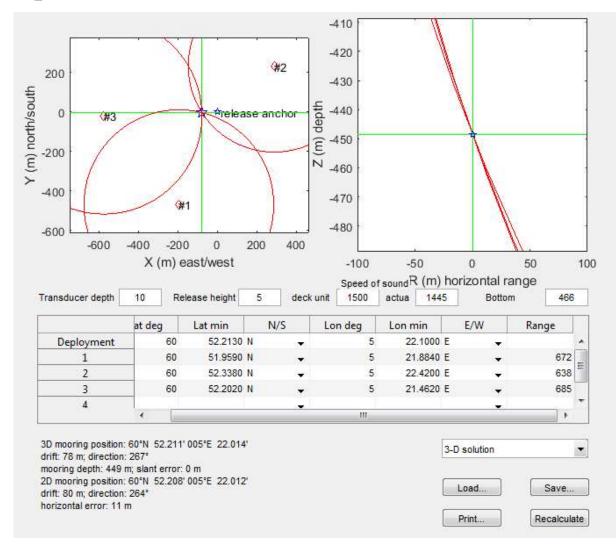
#### Comments:


HI water bottle samples were taken at the bottom at almost all stations. The last column indicate water bottle samples (Oxygen, Salinity, Carbon, Nutrients) taken for UiB.

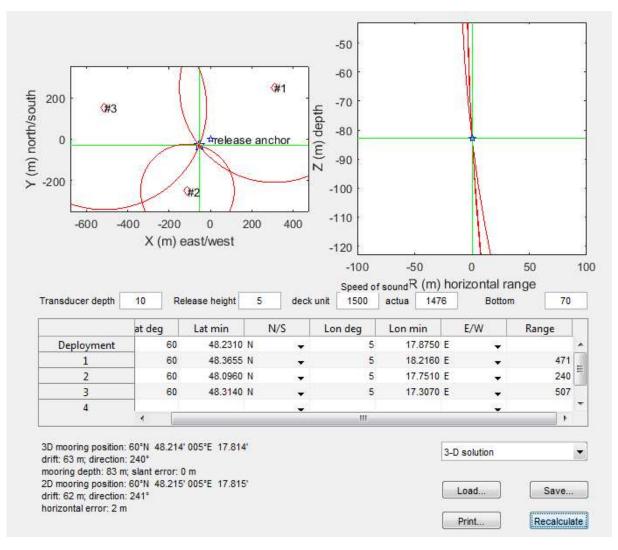

- 116 BF\_sill, mooring deployment
- 117 BF\_inner, mooring deployment
- 126 stopped data aquisition early on the upcast / altimeter did not kick in so we used echosounding and unsure about the final distance between sampling and ground
- 127 strange foam in salinity bottle
- 139 fired all the bottles to check for the bottle with leak.
- 148 CTD sent down before completeing session. Started recording at 50m
- 166 probably too shallow cast because of instrument mismatch
- 170 Changed name because we have added another new station inbetween old A21 and A20.
- 172 We don't know the depth (echosounder shows CTD below bottom (but shallower than depth where we
- began the station), altimeter shows ca. 45m where we stopped, but the slope is very steep).
- 173 Salinity samples, bottle 3 and 7 didn't close

| 11              |            | 8                  |             |                 |                       |                             |                          |
|-----------------|------------|--------------------|-------------|-----------------|-----------------------|-----------------------------|--------------------------|
| Instrume<br>nt  | S/<br>N    | Nye<br>batte<br>ri | Servi<br>ce | Programm<br>ert | Interv<br>al<br>(min) | Start<br>loggin<br>g        | Gjo<br>rt av             |
| SBE37<br>ODO    | 1233<br>8  | Х                  | Х           | х               | 30                    | 02.02.20<br>18 12:00        | Algot                    |
|                 | 1233<br>9  | Х                  | Х           | Х               |                       | UTC                         |                          |
|                 | 1234<br>0  | Х                  | Х           | Х               |                       |                             |                          |
| SBE37<br>SM CTD | 8975       | Х                  | Х           | Х               | 5                     | 02.02.20<br>18 12:00        | Algot                    |
|                 | 5446       | Х                  | Х           | Х               |                       | UTC                         |                          |
|                 | 8974       | Х                  | Х           | Х               |                       |                             |                          |
|                 | 7224       | Х                  | Х           | Х               |                       |                             |                          |
| SBE 56          | 1946       | Х                  | х           | Х               | 5                     | 02.02.20<br>18 12:00<br>UTC | Nadine                   |
| SBE39           | 6149<br>TP | Х                  | Х           | Х               | 20s                   | 04.02.20<br>19 10:00<br>UTC | Elin &<br>Studen<br>ts   |
|                 | 3282<br>TP | Х                  | Х           | Х               |                       | 04.02.20<br>19 10:00<br>UTC | Elin &<br>Studen<br>ts   |
| Sea<br>Guard    | 1050       | Х                  | Х           | х               | 60                    | 02.02.20<br>18 12:00<br>UTC | Algot                    |
| RDCP<br>600     | 229        | Х                  | Х           | х               | 120                   | 02.02.20<br>18 12:00<br>UTC | Stefani<br>e &<br>Nadine |

## **Appendix C: Mooring instrumentation set up**


## **Appendix D: Mooring drawings**






#### Appendix E: Mooring Triangulation









## Appendix F: Bottle information

| Station<br>Name | Depth | Niskin<br>bottle | Oxygen | Salinity | СТ     | Nutrients | ні      |
|-----------------|-------|------------------|--------|----------|--------|-----------|---------|
|                 |       |                  | Bottle | Bottle   | Bottle | Bottle    | Bottle  |
| 116             | 65    | 1                |        | 14       |        |           | 53:1399 |
| 117             | 470   | 1                | 10     |          |        |           | 53:1400 |
|                 | 448   | 2                | 11     |          |        |           |         |
|                 | 448   | 3                |        |          |        |           |         |
|                 | 448   | 4                | 14     |          |        |           |         |
|                 | 350   | 5                | 12     |          |        |           |         |
|                 | 350   | 6                | 16     |          |        |           |         |
|                 | 350   | 7                | 17     |          |        |           |         |
|                 | 350   | 8                | 18     |          |        |           |         |
|                 | 190   | 9                | 13     |          |        |           |         |
|                 | 190   | 10               | 19     |          |        |           |         |
|                 | 190   | 11               |        |          |        |           |         |
|                 | 190   | 12               |        |          |        |           |         |
| 118             | 175   | 1                | 20     |          |        |           | 53:1401 |
|                 | 125   | 2                | 21     |          |        |           |         |
|                 | 100   | 3                | 23     |          |        |           |         |
|                 | 75    | 4                | 25     |          |        |           |         |
|                 | 50    | 5                | 26     |          |        |           |         |
|                 | 30    | 6                | 27     |          |        |           |         |
|                 | 20    | 7                | 28/29  |          |        |           |         |
|                 | 10    | 8                | 30     |          |        |           |         |
|                 | 5     | 9                | 31     |          |        |           |         |
| 119             | 140   | 1                |        |          |        |           | 53:1402 |
| 120             | 169   | 1                |        |          |        |           | 53:1403 |
| 121             | 181   | 1                |        |          |        |           | 53:1404 |
| 122             | 260   | 1                |        |          |        |           | 53:1405 |
| 123             | 420   | 1                |        |          |        |           | 53:1406 |
| 124             | 225   | 1                |        |          |        |           | 53:1407 |
| 125             | 476   | 1                | 32     |          |        |           | 53:1409 |
|                 | 324   | 2                | 33     |          |        |           |         |
|                 | 280   | 3                |        |          |        |           |         |
|                 | 196   | 4                | 34     |          |        |           |         |
|                 | 124   | 5                | 35     |          |        |           |         |
|                 | 103   | 6                | 05     |          |        |           |         |

|     | 78  | 7  | 07    |         |
|-----|-----|----|-------|---------|
|     | 54  | 8  | 14    |         |
|     | 43  | 9  | 08/18 |         |
|     | 28  | 10 | 09    |         |
|     | 13  | 11 | 16    |         |
|     | 8   | 12 | 17    |         |
| 126 | 376 | 1  |       | 53:1413 |
| 127 | 405 | 1  |       | 53:1414 |
| 128 | 345 | 1  |       | 53:1415 |
| 129 | 120 | 1  |       | 53:1416 |
| 130 | 290 | 1  |       | 53:1417 |
| 131 | 225 | 1  |       | 53:1418 |
| 133 | 95  | 1  |       | 53:1419 |
| 134 | 198 | 1  |       | 26:1735 |
| 135 | 139 | 1  |       | 26:1736 |
| 136 | 124 | 1  |       | 26:1737 |
| 137 | 301 | 1  |       | 26:1738 |
| 138 | 478 | 1  | 25    | 26:1739 |
|     | 324 | 2  | 19    |         |
|     | 280 | 3  |       |         |
|     | 196 | 4  | 29    |         |
|     | 124 | 5  | 12    |         |
|     | 104 | 6  | 27    |         |
|     | 79  | 7  | 20    |         |
|     | 54  | 8  | 30    |         |
|     | 43  | 9  | 31    |         |
|     | 26  | 10 | 26    |         |
|     | 13  | 11 | 23    |         |
|     | 8   | 12 | 28    |         |
| 139 | 100 | 1  |       | 26:1742 |
| 140 | 417 | 1  |       | 26:1743 |
| 141 | 656 | 1  | 05/07 | 26:1744 |
|     | 448 | 2  | 08/09 |         |
|     | 382 | 3  | 10/11 |         |
|     | 300 | 4  | 12/13 |         |
|     | 204 | 5  | 14/16 |         |
|     | 153 | 6  | 17/18 |         |
|     | 102 | 7  | 19/20 |         |
|     | 78  | 8  | 21/23 |         |
|     |     |    |       |         |

|     | 51  | 9  | 25/26 |         |
|-----|-----|----|-------|---------|
|     | 32  | 10 | 27/28 |         |
|     | 11  | 11 | 29/30 |         |
|     | 7   | 12 | 31/32 |         |
| 142 | 81  | 1  |       | 26:1747 |
| 143 | 157 | 1  |       | 26:1748 |
| 144 | 272 | 1  |       | 26:1749 |
| 145 | 289 | 1  |       | 26:1750 |
| 146 | 207 | 1  |       | 26:1751 |
| 147 | 347 | 1  |       | 26:1752 |
| 148 | 185 | 1  |       | 26:1753 |
| 149 | 643 | 1  |       | 26:1754 |
| 150 | 671 | 1  |       | 26:1755 |
| 151 | 564 | 1  |       | 83:2032 |
| 152 | 525 | 1  |       | 83:2033 |
| 153 | 538 | 1  |       | 83:2034 |
| 154 | 335 | 1  |       | 83:2035 |
| 155 | 435 | 1  |       | 83:2036 |
| 156 | 299 | 1  | 5     | 83:2037 |
|     | 250 | 2  | 7     |         |
|     | 200 | 3  | 8     |         |
|     | 149 | 4  | 9     |         |
|     | 106 | 5  | 10/11 |         |
|     | 73  | 6  | 12    |         |
|     | 57  | 7  | 13    |         |
|     | 29  | 8  | 14/17 |         |
|     | 19  | 9  | 16    |         |
|     | 8   | 10 | 18    |         |
|     | 3   | 11 | 19    |         |
| 157 | 175 | 1  |       | 83:2041 |
| 158 | 139 | 1  |       | 83:2042 |
| 159 | 181 | 1  |       | 83:2043 |
| 160 | 197 | 1  |       | 83:2044 |
| 161 | 273 | 1  | 21    | 161-1   |
|     | 207 | 2  | 23    | 161-2   |
|     | 155 | 3  | x     | x       |
|     | 97  | 4  | 25    | 161-4   |
|     | 76  | 5  | 26    | 161-5   |
|     | 50  | 6  | 27/30 | 161-6   |
|     |     |    |       |         |

|     | 29   | 7  | 28/31 | 161-7              |
|-----|------|----|-------|--------------------|
|     | 19   | 8  | 29/33 | 161-8              |
|     | 9.50 | 9  | 32/35 | 161-9              |
|     | 4    | 10 | 34    | 161-10             |
| 162 | 344  | 1  |       | 83:2045            |
| 163 | 642  | 1  |       | 83:2046            |
| 164 | 181  | 1  |       | 83:2047            |
| 165 | 89   | 1  |       | 83:2048            |
| 166 | 89   | 1  |       | 83:2049            |
| 167 | 566  | 1  |       | 83:2050            |
| 168 | 325  | 1  |       | 83:2051            |
| 169 | 334  | 1  |       | 83:2052            |
| 170 | 95   | 1  |       | 83:2053            |
| 171 | 199  | 1  |       | 83:2054            |
| 172 | 318  | 1  |       | 83:2055            |
| 173 | 655  | 1  |       | 70:1273 /<br>173-1 |
|     | 502  | 2  |       | 173-2              |
|     | 375  | 3  |       |                    |
|     | 249  | 4  |       | 173-4              |
|     | 137  | 5  |       | 173-5              |
|     | 71   | 6  |       | 173-6              |
|     | 10   | 7  |       |                    |
| 174 | 68   | 1  |       | 70:1274            |
| 175 | 154  | 1  |       | 70:1275            |
| 176 | 291  | 1  | 5     | 70:1276 /<br>176-1 |
|     | 147  | 2  | 7     | 176-2              |
|     | 147  | 3  |       |                    |
|     | 96   | 4  | 8     | 176-3              |
|     | 96   | 5  |       |                    |
|     | 70   | 6  | 9/12  | 176-4              |
|     | 70   | 7  |       |                    |
|     | 50   | 8  | 10/13 | 176-5              |
|     | 50   | 9  |       |                    |
|     | 5    | 10 | 11    | 176-6              |
|     | 5    | 11 |       |                    |
| 177 | 75   | 1  |       | 70:1277            |
| 178 | 291  | 1  |       | 70:1278            |

| 179 | 340 | 1 | 70:1279 |
|-----|-----|---|---------|
| 180 | 275 | 1 |         |
| 181 | 112 | 1 | 70:1280 |

## Appendix G: MSS Log sheet

MSS LOG-SHEET

Kristine Bonnevie KB 2019 602 Vessel

Cruise 1-4 Feb 2019

Date

| castXXX | Da   | ate/UTC  | ;  | Time | e/UTC | E.<br>Depth | Lati | tude/ N | Long | jitude/ E | Start    | End |                                             |
|---------|------|----------|----|------|-------|-------------|------|---------|------|-----------|----------|-----|---------------------------------------------|
|         | year | mon      | dd | hh   | min   | m           | deg  | min     | deg  | min       | m        | m   |                                             |
| 1       | 2019 | 2        | 2  | 7    | 50    | 170         | 60   | 52.27   | 5    | 33.70     | 1        | 136 | Removed 2 floating elements before cas      |
| 2       | 2019 | 2        | 2  | 8    | 6     | 187         | 60   | 52.30   | 5    | 33.20     | 8        | 170 | Removed 1 floating element                  |
| 3       | 2019 | 2        | 2  | 8    | 25    | 164         | 60   | 52.29   | 5    | 31.92     | 8        | 151 | Removed 1 metal ring                        |
| 4       | 2019 | 2        | 2  | 8    | 44    | 183         | 60   | 51.97   | 5    | 30.36     | 8        | 185 | Removed 2 metal rings                       |
| 5       | 2019 | 2        | 2  | 9    | 6     | 172         | 60   | 52.78   | 5    | 29.02     | 8        | 139 | We have in total 9 floating elements (inc   |
| 6       | 2019 | 2        | 2  | 9    | 28    | 268         | 60   | 52.93   | 5    | 28.44     | 8        | 273 |                                             |
| 7       | 2019 | 2        | 2  | 10   | 6     | 405         | 60   | 52.45   | 5    | 26.22     | 9        | 360 | Issues with getting the logging program     |
| 8       | 2019 | 2        | 2  | 10   | 52    | 482         | 60   | 52.31   | 5    | 24.92     | 8        | 470 |                                             |
| 9       | 2019 | 2        | 2  | 11   | 24    | 465         | 60   | 52.44   | 5    | 24.65     | 2        | 463 |                                             |
| 10      | 2019 | 2        | 2  | 13   | 15    | 406         | 60   | 51.297  | 5    | 21.196    | 5        | 108 | Strong current, lost connection             |
| 11      | 2019 | 2        | 2  | 13   | 20    | 410         | 60   | 51.268  | 5    | 21.182    | 1        | 244 | lost connection, changed the blue box       |
| 12      | 2019 | 2        | 2  | 13   | 53    | 343         | 60   | 50.485  | 5    | 21.786    | 2        | 322 |                                             |
| 13      | 2019 | 2        | 2  | 14   | 27    | 103         | 60   | 49.834  | 5    | 20.523    | 1        | 86  |                                             |
| 14      | 2019 | 2        | 2  | 14   | 47    | 297         | 60   | 49.46   | 5    | 20.52     | 2        | 283 |                                             |
| 15      | 2019 | 2        | 2  | 15   | 12    | 194         | 60   | 48.96   | 5    | 19.40     | 2        | 181 |                                             |
| 16      | 2019 | 2        | 2  | 15   | 38    | 101         | 60   | 48.29   | 5    | 17.89     | 2        | 88  |                                             |
| 17      | 2019 | 2        | 2  | 15   | 51    | 205         | 60   | 48.19   | 5    | 17.71     | 2        | 187 |                                             |
| 18      | 2019 | 2        | 2  | 16   | 18    | 152         | 60   | 47.18   | 5    | 16.19     | 2        | 143 |                                             |
| 19      | 2019 | 2        | 2  | 16   | 52    | 138         | 60   | 46.524  | 5    | 14.172    | 2        | 122 |                                             |
| 20      | 2019 | 2        | 2  | 17   | 6     | 322         | 60   | 46.242  | 5    | 13.639    | 8        | 320 | Lost connection on the way up.              |
| 21      | 2019 | 2        | 2  | 17   | 31    | 650         | 60   | 45.924  | 5    | 12.897    | 2        | 557 | The pressure censor stopped recording 500m. |
| 22      | 2019 | 2        | 2  | 18   | 5     | 385         | 60   | 45.82   | 5    | 12.584    | 2        | 367 | Lost connection on the way up.              |
| 23      | 2019 | 2        | 2  | 18   | 57    | 104         | 60   | 45.75   | 5    | 12.342    | 2        | 94  | Lost connection 2 times on way down. T      |
| 24      | 2019 | 2        | 3  | 7    | 10    | 205         | 60   | 48.24   | 5    | 16.55     | 1        | 187 | Start time series                           |
| 25      | 2019 | 2        | 3  | 7    | 33    | 98          | 60   | 48.29   | 5    | 17.90     | 1        | 87  |                                             |
| 26      | 2019 | 2        | 3  | 7    | 52    | 154         | 60   | 48.34   | 5    | 19.10     | 1        | 138 |                                             |
| 27      | 2019 | 2        | 3  | 8    | 11    | 205         | 60   | 48.25   | 5    | 16.55     | 1        | 187 | New lap, periods with low fall speed        |
| 28      | 2019 | 2        | 3  | 8    | 32    | 108         | 60   | 48.312  | 5    | 17.869    | 1        | 92  |                                             |
| 29      | 2019 | 2        | 3  | 8    | 45    | 146         | 60   | 48.369  | 5    | 19.079    | 1        | 132 |                                             |
| 30      | 2019 | 2        | 3  | 9    | 6     | 205         | 60   | 48.23   | 5    | 16.52     | 1        | 187 | New lap                                     |
| 31      | 2019 | 2        | 3  | 9    | 24    | 97          | 60   | 48.33   | 5    | 17.96     | 1        | 83  | l l                                         |
| 32      | 2019 | 2        | 3  | 9    | 38    | 137         | 60   | 48.38   | 5    | 19.16     | 1        | 123 |                                             |
| 33      | 2019 | 2        | 3  | 9    | 58    | 206         | 60   | 48.211  | 5    | 16.535    | 1        | 185 | New lap                                     |
| 34      | 2019 | 2        | 3  | 10   | 19    | 105         | 60   | 48.30   | 5    | 17.89     | 1        | 89  | l l                                         |
| 35      | 2019 | 2        | 3  | 10   | 42    | 140         | 60   | 48.35   | 5    | 19.11     | 1        | 134 |                                             |
| 36      | 2019 | 2        | 3  | 11   | 21    | 205         | 60   | 48.222  | 5    | 16.588    | 1        | 187 |                                             |
| 37      | 2019 | 2        | 3  | 11   | 40    | 97          | 60   | 48.297  | 5    | 17.837    | 1        | 86  |                                             |
| 38      | 2019 | 2        | 3  | 11   | 58    | 153         | 60   | 48.347  | 5    | 19.124    | 1        | 135 | Programme crashed, started cast over.       |
| 39      | 2019 | 2        | 3  | 12   | 47    | 205         | 60   | 48.288  | 5    | 16.617    | 1        | 186 |                                             |
| 40      | 2019 | 2        | 3  | 13   | 9     | 101         | 60   | 48.305  | 5    | 17.830    | 1        | 85  |                                             |
| 41      | 2019 | 2        | 3  | 13   | 30    | 150         | 60   | 48.325  | 5    | 19.051    | 1        | 136 |                                             |
| 42      | 2019 | 2        | 3  | 13   | 53    | 205         | 60   | 48.027  | 5    | 17.805    | 1        | 185 | Stopped recording a bit late - stopped a    |
| 43      | 2019 | 2        | 3  | 14   | 19    | 90          | 60   | 48.284  | 5    | 17.786    | 1        | 80  |                                             |
| 44      | 2019 | 2        | 3  | 14   | 43    | 129         | 60   | 48.376  | 5    | 19.113    | 1        | 114 |                                             |
| 45      | 2019 | 2        | 3  | 15   | 2     | 205         | 60   | 48.234  | 5    | 16.635    | 1        | 186 |                                             |
| -10     | 2010 | <u> </u> | 5  | 0    | ~     | 200         | 00   | 40.204  | 5    | 10.000    | <u> </u> | 100 | 1                                           |

| 46 | 2019 | 2 | 3 | 15 | 22 | 84  | 60 | 48.268 | 5 | 17.787 | 1 | 66  |  |
|----|------|---|---|----|----|-----|----|--------|---|--------|---|-----|--|
| 47 | 2019 | 2 | 3 | 15 | 38 | 150 | 60 | 48.355 | 5 | 19.170 | 1 | 141 |  |
| 48 | 2019 | 2 | 3 | 16 | 10 | 205 | 60 | 48.221 | 5 | 16.664 | 1 | 187 |  |
| 49 | 2019 | 2 | 3 | 16 | 32 | 108 | 60 | 48.323 | 5 | 17.883 | 1 | 96  |  |
| 50 | 2019 | 2 | 3 | 16 | 45 | 150 | 60 | 48.349 | 5 | 19.071 | 1 | 133 |  |
| 51 | 2019 | 2 | 3 | 17 | 23 | 205 | 60 | 48.22  | 5 | 16.63  | 1 | 185 |  |
| 52 | 2019 | 2 | 3 | 17 | 43 | 99  | 60 | 48.28  | 5 | 17.88  | 1 | 84  |  |
| 53 | 2019 | 2 | 3 | 18 | 13 | 148 | 60 | 48.35  | 5 | 19.13  | 1 | 132 |  |
| 54 | 2019 | 2 | 3 | 18 | 32 | 205 | 60 | 48.23  | 5 | 16.58  | 1 | 187 |  |