CRUISE REPORT

Cruise KB 2020603

with R.V. Kristine Bonnevie

2 – 8 March 2020

Working Areas:

Masfjorden, Fensfjorden, Lurefjorden, Sognesjøen

Geophysical Institute, University of Bergen

Compiled from inputs of GEOF232 & GEOF337 students, spring 2020

Version: 1 February 2020

Contents

1	Background (Elin & Kjersti)						
2	Cruise participants						
3	Cruise Overview (Elin & Kjersti)4						
4	Envi	ronmental conditions: Weather (GEOF232) & tides (GEOF337)	. 5				
5	Мос	prings (GEOF337)	. 6				
	5.1 Mooring recovery						
	5.2	Mooring deployment	. 9				
	5.3	Calibration of conductivity sensors (SBE37 & RBR Concerto)	10				
6	The	rmosalinograph (GEOF232)	12				
7	CTD	profiling (GEOF232)	12				
	7.1	Water sampling	19				
	7.1.	1 Dissolved oxygen	19				
	7.1.2	2 salt calibration	21				
	7.1.3	3 Nutrients	21				
	7.1.4	4 Dissolved inorganic carbon (DIC)	22				
8	Min	i CTD and Helgeboat	24				
9	Curr	ent Profiling using Vessel-mounted ADCP (VMADCP)	29				
9.	Micr	ostructure Profiling (GEOF337)	29				
12	. Isoto	pes (GEOF232)	34				
13	. LIDAI	R (GEOF232)	34				
14	. Irradi	ance and light absorbance	34				
15	. Drifte	ers	37				
Aŗ	pendi	A: Cruise narrative	40				
> ()1:20 (UTC) Head back to Bergen	45				
Aŗ	Appendix B: List of CTD stations						
Aŗ	pendi	c C: Mooring instrumentation setup	52				
Aŗ	pendi	c D: Mooring drawings (recovered)	54				
Aŗ	pendi	c E: Mooring drawings (deployed)	54				
Aŗ	pendi	c E: Mooring drawing (deployed)	56				
Aŗ	pendi	c F: Water samples from CTD	57				
Aŗ	pendi	G: List of MSS-stations	66				
Aŗ	ppendix H: Notes for next year						

1 Background (Elin & Kjersti)

The cruise onboard the Research Vessel Kristine Bonnevie was undertaken as a part of the GEOF232 & GEOF337 courses offered at the Geophysical Institute (GFI), University of Bergen. The site of the study was Masfjorden, Fensfjorden, and Lurefjorden. The data set collected aimed to address the tides and mixing processes in Masfjorden, the ocean-fjord exchange mechanisms, the observed deoxygenation of the deep inner basin, surface currents, and the upper mixed layer hydrography. The students become familiar with typical and state-of-the-art measurement systems, including shipbased measurements (CTD, thermosalinograph, Ship-ADCP, and Lidar) as well as moored instruments, turbulence measurements (MSS) and measurements of oxygen, salt, Carbon, and nutrients from collected water samples. The students participate in the planning of the cruise and sampling and contribute substantially to the cruise report.

In total, two moorings were recovered and re-deployed consisting of current meters, current profilers, and temperature, salinity, oxygen, and pressure loggers, which will collect data for a one-year duration. During the cruise, data collection was primarily by using the ship's CTD, vessel-mounted current profiling system, GFI's Lidar, GFI's microstructure profiler, drifters, and a homemade construction equipped with hydrography sensors, that was towed after the working boat to measure the surface layer hydrography.

2 Cruise participants

This cruise is part of the practical training in the GFI courses GEOF337 (Fjord oceanography) and GEOF232 (Practical meteorology and oceanography). Five students from GEOF337 joined the full cruise (2-8 March), and ten students from GEOF232 were split into two groups, staying on the ship for half the period each (2-5 or 5-8 March). One GEIF232 student (Martine) stayed the full week to do some light measurements for her Ph.D. project. An overview of the cruise participants, their role, and the periods they stayed onboard are given in Table 1.

Last name	First name	Role	Time onboard
Darelius	Elin	Cruise leader	2-8 March
Daae	Kjersti	Assisting cruise leader	2-8 March
Bryhni	Helge	Engineer	2-8 March
Dörr	Jakob	Teaching assistant	2-8 March
Duscha	Christiane	Teaching assistant	2-8 March
Rieke	Ole	Geof 337	2-8 March
	Victor	Geof 337	2-8 March

Table 1. Cruise participants

Pou	Joan	Geof 337	2-8 March
Sagen	Torunn	Geof 337	2-8 March
Clay	Jacintha	Geof 337	2-8 March
Solås	Martine Røysted	Geof 232 (PhD Bio)	2-8 March
Skavang	Jacob Qvam	Geof 232	2-5 March
Harestad	Jonas	Geof 232	2-5 March
Larsen	Henrik	Geof 232	2-5 March
Bardel	Franziska	Geof 232	2-5 March
Мое	Thorbjørn Østenby	Geof 232	5-8 March
Horpestad	Kjartan	Geof 232	5-8 March
Davidson	Perrin Wesley	Geof 232	5-8 March
Auganæs	Sigrid Marie Vildskog	Geof 232	5-8 March
Knudsen	Carina	Geof 232	5-8 March

3 Cruise Overview

During cruise KB2020603 to Masfjord, we recovered and redeployed two moorings, made 106 CTDstations and 44 MSS-cast, and measured irradiance at the surface and underwater irradiance using Trios RAMSES hyperspectral radiometers and an underwater light sensor prototype. The moorings, MF_sill and MF_inner, were first deployed in February 2019 (during KB2019602) to monitor the exchange of water across the main sill of Masfjorden (79 m) and the evolution of hydrography and oxygen in the deep inner basin respectively. The moorings were redeployed for one more year of measurements.

Along-fjord CTD-section were taken a) along Masfjorden (Section M), along Fensfjorden (Section F) and along Lurefjorden (section L) and across Masfjorden (Section XM) and Fensfjorden (Section XFa/XFb). We also made 7 CTD casts in Sognesjøen on request from IMR.

MSS-section was taken along Section M (extending across Fensfjorden), and a 12h time series was occupied in the Duesund sill area in Masfjord. An additional MSS-section was obtained along Lurefjorden (L-section).

We visited Haugsværfjorden, the inner, northern branch of Masfjorden, and measured oxygen, salt, carbon, nutrients, and isotopes from water samples. In 2019, there was no oxygen at the bottom of Haugsværfjorden, and the bottom water did not smell of Hydrogensulfur (H_2S). In this cruise, however, we found anoxic conditions higher up in the water column, and a strong smell of H_2S .

Water samples for calibration of the oxygen sand salinity sensors of the CTD were taken at 73 stations, and these were analyzed onboard. In addition to the one bottle that IMR takes at the bottom of each station, we took 112 water bottles for calibration of the conductivity sensor. These bottles were analyzed onboard, using a Portasal instrument. We sampled 134 water bottles for calibration of the oxygen sensor. These were analyzed using Winkler titration.

The cruise track is shown in Figure 1.

The thermosalinograph, the shipADCP, the weather station, and the GFa Lidar ran continuously throughout the cruise.

A detailed cruise narrative is given in Appendix A.

Figure 1: Cruise track

4 Environmental conditions: Weather (GEOF232) & tides (GEOF337)

Short description of weather conditions – figure showing strength/direction of wind and temperature. Mark periods when drifters were out

Our cruise in Masfjorden took place during neap tide. In Figure 4.1, we can see the tidal predictions for Masfjorden and the observed water level. The figure shows that the period between the 2nd and 8th of March is a neap tide period. The blue line shows the observed water levels. The data and figures are from Kartverket.no.

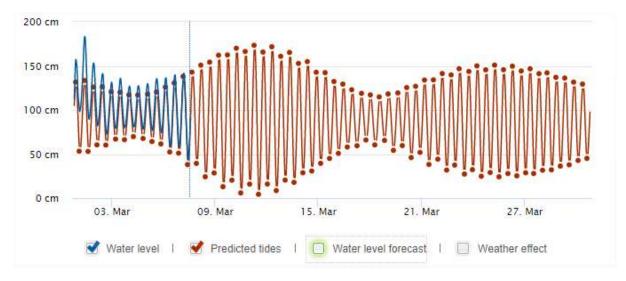
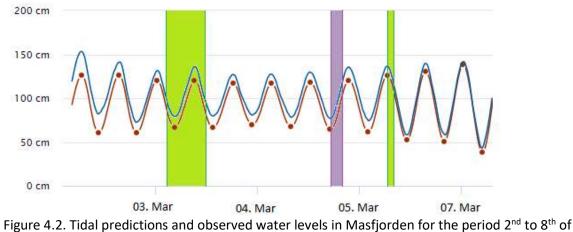



Figure 4.1. Tidal predictions for Masfjorden for the period 1-30 March 2020. The blue line shows the observed water level. Figure and data from Kartverket.no

In Figure 4.2, we see the tidal prediction and observed water levels for Masfjorden for the period $2^{nd} - 7^{th}$ of March. In the figure, we have marked when we measured the MSS time-series. The green area shows when data are collected in Masfjorden, and the purple area when data were collected in Lurefjorden. The data and figure are from Kartverket.no, but modified by us to indicate when the MSS time-series were taken. See chapter 9 for information about the MSS, and appendix G for the list of the MSS stations.

March. Data and figure from Kartverket.no, modified by us.

5 Moorings (GEOF337)

5.1 Mooring recovery

The moorings MF_sill and MF_inner deployed during KB2019602 (February 2019) were recovered during the cruise. The location of the moorings is shown in Figure (??) and the moorings drawings are in Appendix D. The recovery information is specified in Table 2 and the instrumentation in

Table 3 - Table 4.

MF_inner:

SBE37 sn 5446 at 45 m depth: The instrument had slid down and was located just above the SBE37 ODO 12338 on recovery. The SBE37 upper mounting was not threaded as it should be (this was fixed before redeployment).

MF_sill:

The entire mooring was covered by biology, see Figur 1.

Figur 1: Instrumentation recovered from MF_sill.

SBE37 sn 5446 at 45 m depth: The SBE37 upper mounting was not threaded as it should be (this was fixed before redeployment). During the downloading process, it was seen that there was no data logged during the whole deployment period; the instrument had never started logging.

The RDCP600 had short-circuited by 10/03/2019, so no data was logged after that. The instrument was found to be tilted in the frame, but this most likely happened after the instrument had stopped logging since tilt remains low (and constant) throughout the deployment.

Table 2 Mooring Recovery Details

MOORING RECOVERY				
	MF_sill	MF_inner		
Position	60° 48.231' N, 5° 17.875' E	60° 52.204'N 5° 22.105'E		
Time	4/3 08:20	2/3 17:25		
Echodepth		470		
CTD station				

The information regarding the structure of the moorings and some comments are found in the tables below.

Depth(m)	Height(m)	Instrument	Serial #	SI (min)	Comments
200	260	SBE37ODO	12340		
275	185	SBE37CTD	8974	5	Instrument had slid down, was located just above 12338.
350	110	SBE37ODO	12338		
450	10	SBE37ODO	12339		
455	5	AR	2424		

Table 3 Instrument details mooring MF_inner

Table 4 Instrument details mooring MF_sill during the recovery.

Depth(m)	Height(m)	Instrument	Serial #	SI (min)	Comments
15	55	Seaguard	1050	60	
25	45	SBE56	1946	5	
45	25	SBE37	5446		Did not log any data from the beginning. It presented communication troubles
65	5	RDCP600	229	120	Th wire sqeezed ans short circuited afer a month (10/3/2019). No data logged after that. Tilted in buoy.
66	4	SBE37	8975		
67	3	AR	1224		

5.2 Mooring deployment

Instruments were serviced onboard and most instrument were set to start on 07/03 14:00 UTC, see Appendix xx for details on instrument set up.

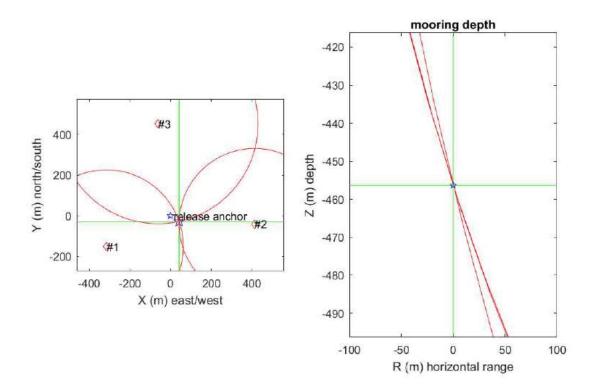

The moorings were redeployed 7/3 2020, starting with MF_inner. By 10:00 the upper buoys of MF_inner were in the water and at 10:15 finally the weight was released

Table 5: Mooring deployment details

MOORING DEPLOYMENT				
	MF_sill	MF_inner		
Position	60°48.230'N 5°17.916'E	60° 52.204'N 5° 22.105'E		
Time	7/3 10:15	7/3 09:15		
Echodepth	86.5	470		
CTD station	265	267		
Acoustic release	sn 1222 Arm:0899,	SN:1564 Arm:0A0E		
	Rel:Arm+0855	Rel: Arm+0A55		

Some changes were done regarding the mooring design and updated mooring drawings are shown in Appendix E.

The mooring MF_inner was triangulated and the results are shown in Figure 5.1.

anchor release position: 60°N 52.204' 005°W 22.107'; depth: 456 m 3D mooring position: 60°N 52.189' 005°W 22.060' drift: 51 m; direction: 124° mooring depth: 456 m; slant error: 0 m 2D mooring position: 60°N 52.189' 005°W 22.060' drift: 51 m; direction: 124° horizontal error: 0 m sound speed at site: 1445 m/s

#1 pos: 60°N 52.122' 005°W 22.456' range: 577 m range soundspeed 1500 #2 pos: 60°N 52.182' 005°W 21.648' range: 573 m range soundspeed 1500 #3 pos: 60°N 52.448' 005°W 22.174' range: 657 m range soundspeed 1500

5.3 Calibration of conductivity sensors (SBE37 & RBR Concerto)

As part of the mooring re-deployment, three calibration stations were done. See **Table** 6, Table 7, and Table 8. The instruments were attached to the rosette, and the CTD was held 5 minutes at the bottom (and one more depth for some of the casts).

The mean difference between the conductivity measured by the instrument and that measured by the CTD during the five minutes stop is listed in Table 9. A five minute stop is not enough for the oxygen sensor to settle, and the data cannot be used to calibrate these sensors.

Table 6: Calibration station 1

Calibration 1.		CTD station M26	Cast : 215
Instrument SN		Comments	
SBE37	8795 Poor data. Possible due to unclean sensor		
8794		It was set to local time, not to UTC.	
12338			
	12339		
12340			

Table 7: Calibration station 2

Calibration 2		CTD station L6	Cast : 245
Instrument	SN	Comments	
SBE37 8795		Data OK	
RBR concerto	60648		
	5446	No data collected, instrument did not start.	

Table 8: Calibration station 3

Calibr	ation 2	CTD station L6	Cast : 257
Instrument	SN	Comments	
SBE37	5446	Data OK	

Table 9: Calibration results. "Cond" is the mean conductivity [mS/cm] measured during the 5-minutes stop,dc is the mean difference in conductivity (instrument-ctd) and dc_std the standard deviation of dc.

sn	cond	dc	dc_std
	<u> </u>		
'12338'	[36.5348]	[-0.0016]	[0.0041]
'12338'	[36.4602]	[-0.0018]	[4.0000e-04]
'12339'	[36.5348]	[-0.0173]	[0.0037]
'12339'	[36.4602]	[-0.0178]	[2.0000e-04]
'12340'	[36.5348]	[-0.0030]	[0.0070]
'12340'	[36.4602]	[-0.0022]	[4.0000e-04]
'5446'	[36.5731]	[-0.0038]	[0.0013]
'5446'	[36.4577]	[-0.0102]	[0.0016]
'8974'	[36.5348]	[-0.0103]	[0.0076]
'8974'	[36.4602]	[-0.0172]	[0.0018]
'8975'	[33.8094]	[-0.0173]	[0.0031]
'RBR 60648'	[33.8094]	[0.0089]	[6.0000e-04]

6 Thermosalinograph (GEOF232)

A thermosalinograph is mounted close to the water intake of the ship. It measures the sea surface temperature and conductivity while the ship is in motion. The data that is collected can be used to calculate salinity, density, sound velocity, and other parameters.

The measuring of the seawater conductivity is done by a conductivity cell in the thermosalinograph. The conductivity can be used to calculate the salinity. The temperature is measured by a thermistor cell. Since the instrument is often placed in the engine room, the measurement could be biased by the heat of the room.

7 CTD profiling (GEOF232)

The CTD is an oceanographic instrument used during the cruise to measure salinity, temperature, and pressure. The name reflects this: conductivity from which salinity is determined, temperature, and depth which is determined from pressure. For our experiments, the CTD, which is a cylindrical instrument, was placed at the base of a larger metal framework and lowered through the water column at a continuous speed via a winch attached to the cruise boat. Instantaneously, data from the CTD was relayed to the cruise boat's computers displaying a vertical profile of the water column at that location. The total set of data included: salinity, pressure and depth, temperature, fluorescence implying organic carbon concentration, density, and oxygen. Upon completing the CTD, this data was saved and used for calibration of other sensors used on the cruise. The calibration dates and list of sensors used on this cruise are presented in Table ??.

The CTD framework also housed a rosette of 12 Niskin Bottles. These bottles were triggered remotely from the boat to capture water samples at different depths below sea level, starting at the lowest point and moving upward toward the water's surface. Each bottle was fired 30 seconds after stopping the instrument from moving. Importantly, the bottles captured the samples on the "down-cast" to avoid any perturbations in the collected water due to the moving instruments.

The cruise ran 105 CTDs throughout the 7-day cruise with CTD model SBE9 and rosette water sample SBE32. For each CTD, a different number of Niskin bottles were fired, ranging from 0 to all 12. (Firing all 12 was called a "Full CTD.") Niskin Bottle 1 was also fired at the lowest point of the CTD profile, around 10 meters from the seafloor. The water samples from these bottles were analyzed for a variety of chemical constituents. On the cruise, the constituents measured from these samples were: oxygen, nitrate, sulfate, phosphorous, dissolved inorganic carbon, salinity, and alkalinity. Different procedures were undergone to collect water samples from Niskin Bottles depending on the chemical constituent being measured. Before all samples were collected, a datasheet was created, denoting the samples collected per Niskin Bottle. This sheet included the numbers for each bottle and the sample included in each.

For collecting water samples of oxygen, the procedure reflected the need to have no air bubbles in the sample as this would relay inaccurate measurements. After washing all surfaces in contact with the

water sample, the sample bottle was rinsed out 3 times and overfilled to twice the volume of the bottle. Then, 1 mL of manganese sulfate ($MnSO_4$) and 1 mL of alkali-iodide-azide ($NaOH-KI-NaN_3$) were added to the samples and a stopper carefully placed to ensure no bubbles were in the sample. After shaking the samples for 20 seconds, the bottles were stored before undergoing the rest of the Winkler Method of titration.

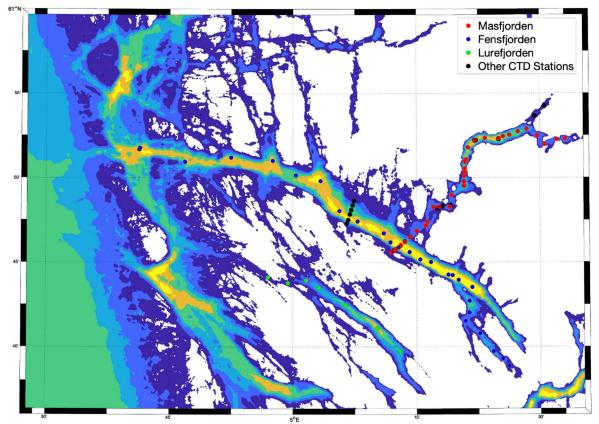
Samples for nitrate, sulfate, phosphorous, and dissolved inorganic carbon followed a similar procedure. After cleaning all surfaces in contact with the water sample were cleaned, each bottle was rinsed 3 times in the sample before being overfilled to twice the volume of the bottle. Then, each bottle was stoppered, and the number was marked down for proper accounting of the sample in analysis later.

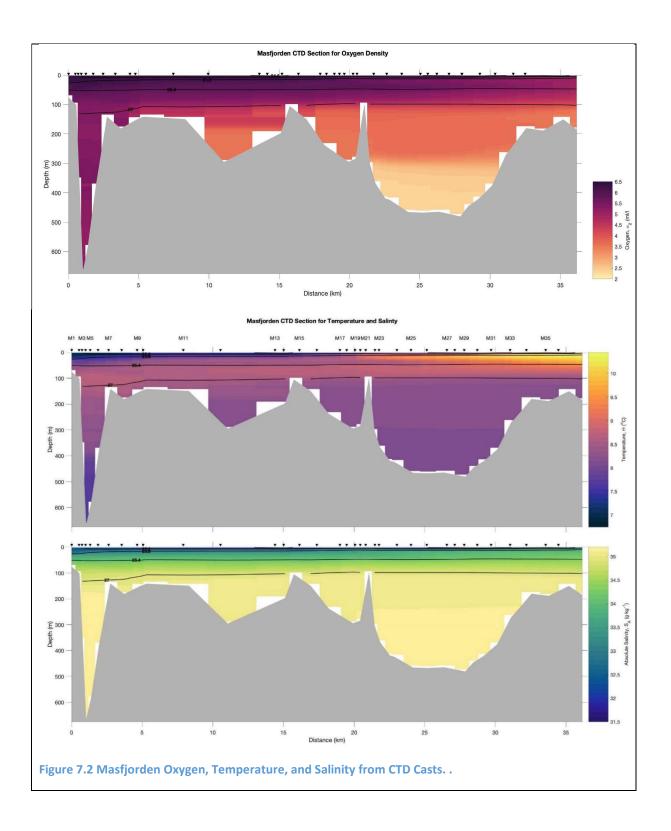
For all samples of salinity and alkalinity, after all surface contacting the sample were cleaned, the bottle was overfilled to twice its volume and then stoppered. The number was also marked. It is important to note here that a water sample from Niskin Bottle 1, the lowest water sample, was taken for analysis by the Institute for Marine Research. Additionally, a light sensor was mounted on the CTD rosette to according to the procedure produced by a graduate student for her thesis work. This did not impact the function of the CTD-proper.

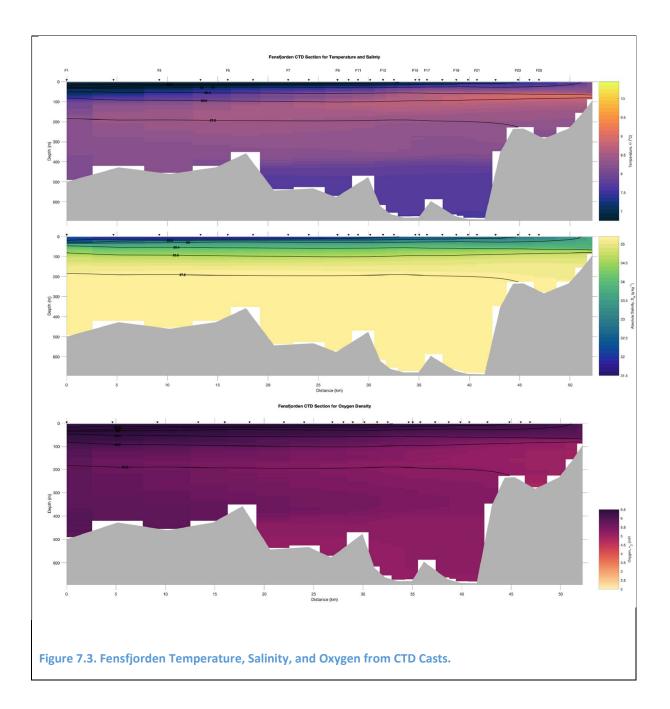
This cruise made five sections across five fjords, consisting of numerous CTD stations. These sections are: Masfjorden (M), Fensfjorden (F), Lurefjorden (L), Haugsværfjorden (H), and Sognefjorden (S). See Figure 7.1 for the Map showing the distribution of these sections. The Masfjorden section consisted of 35 stations, the Fensfjorden section consisted of 25 stations, the Lurefjorden section consisted of 7 stations, the Haugsværfjorden section consisted of 3 stations, and the Sogneforden section consisted of 5 stations. Additionally, one last section was made across Fensfjorden, denoted FX, and consisted of 6 stations. There were also numerous CTDs not a part of these sections. Table 11 includes the section by name, corresponding number of stations, and the dates occupied.

There were a few problems that we encountered during this cruise relating to the CTD profiling. All of these related to the firing of Niskin Bottles. Bottle 2 was faulty during the first leg of the cruise at Station M31 in Masfjorden on 02/03. This bottle was attended to and fixed by cruise technicians. Additionally, a CTD at M26 was aborted and checked for clean tubes before resuming on 03/03. Bottles 4 and 7 were faulty during the second leg of the cruise, 05/03 to 08/03, and were never fixed. Bottle 7 did not fire during a CTD at Station M26 on 04/03. Bottle 4 did not fire at Station S2 on 05/03 and 07/03 and at Station H3 on 06/03.

To account for these bottle issues, an additional bottle was fired as a redundancy in case a faulty bottle would not fire. Unfortunately, if a bottle was faulty and no redundancy was in place, then this will be noted in the subsequent water sample analysis.




Figure 7.1. CTD Sites in Masfjord, Fensfjorden, and Lurefjord. Each cast was taken between 02/03 to 08/03. Table 10. Oceanographic Sensor List and Calibration Date.


Sensor	Serial Number	Last Calibrated
Primary Temperature Sensor	03-5884	19. October 2017
Secondary Temperature Sensor	03-4306	19. October 2017
Primary Conductivity Sensor	04-4386	14. December 2017
Secondary Conductivity Sensor	04-2860	14. November 2017
Pressure Sensor	134950	147 November 2015

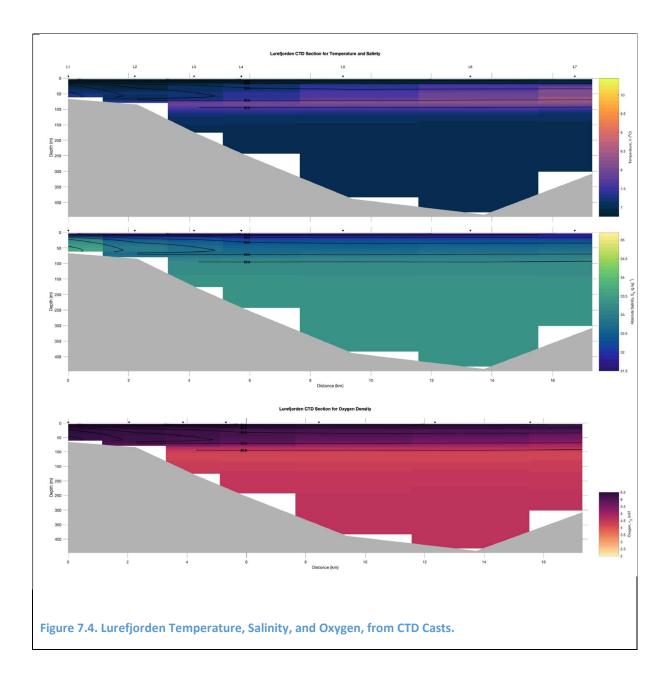
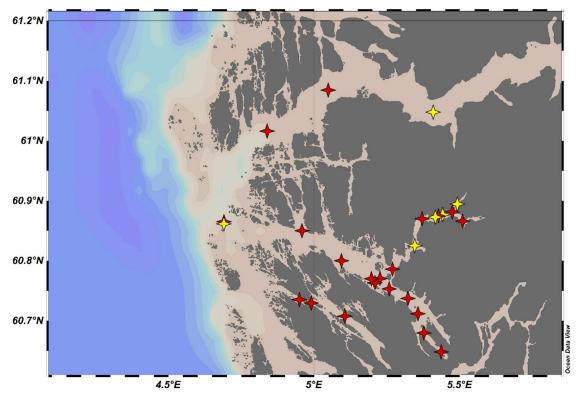

Submersible Pump	05-8402	N/A
Oxygen Sensor	43-0633	31. October 2017
Fluormeter, Wet Labs ECO-AFL/FL	FLRTD-4131	02. October 2015
PAR sensor, Biospherical QCP2300-HP	70656	13. January 2017
SPAR sensor, Biospherical QCR-2200	20539	13. January 2017

Table 11. sections, when they were occupied


Section	Date Occupied	Number of Stations
Masfjorden (M)	02/03 to 04/03	35
Fensfjorden (F)	04/03 to 05/03	25
Sognesfjorden (S)	05/03	5
Lurefjorden (L)	05/03	5
Haugsværfjorden (H)	06/03	3
Fensfjorden II (FX)	07/03 to 08/03	6

7.1 Water sampling

Figure 7.5. Map of CTD-stations in Sognesjøen, Fensfjord, Masfjord, and Lurefjord where water samples were collected for Winkler-titration. Yellow stars mark full stations (8-12 sample depths per station) and red stars mark normal stations (3-4 sample depths per station).

7.1.1 Dissolved oxygen

To calibrate the CTD oxygen sensor we collected a total of 134 water samples from 28 different CTD stations. (Appendix F.1). The water samples were collected at different depths and were analyzed onboard by manualWinkler-titration.

Several measures were taken in order to minimalize oxygen loss/introduction from/to the water samples: A tube was attached to the niskin bottle and air bubbles were removed by pressing lightly on the tube while water was flowing through it. The sample flask, flask stopper and tube were rinsed with the sample water ca. three times. Furthermore, we inserted the tube into the flask, and let the water overflow the flask volume ca. two times. While the flask was overflowing, we measured the water temperature (to the nearest 0.1 °C). After the second overflow, we removed the tube while water was still flowing, and added 1 ml of MnCl₂ (3M) and then 1 ml of NaOH + NaI (4M) to the water sample. The stopper was then carefully put into the flask before the solutions were mixed by shaking the bottle thoroughly for ca. 20 seconds. Throughout the whole procedure, the flask was inspected for trapped air bubbles. If bubbles were discovered and could not be removed, the sample was discarded. If samples could not be titrated shortly after sampling, distilled water was added on top of the stopper to prevent oxygen leakage.

All oxygen samples were titrated onboard. The preparation of standards and blanks used during the titration were described in a hand-out-manual given onboard.

Before titration, 1 ml of H₂SO₄ (5M) was added to the sample. During titration a magnet stirrer was used to mix reagents. NaS₂O₃ (0.01M) was titrated in doses of 0.05ml until the solution was nearly colorless (a hint of yellow). Three drops of starch solution (glycerol-based) was added to the solution to make it blue, and the titration of NaS₂O₃ (0.01M) continued in doses of 0.002 ml until the solution was colorless.

To further calculate the concentration of dissolved oxygen in each water sample, we followed the calculations described in the hand-out-manual.

A total of four datapoints were removed before any analysis of Winkler titration results and CTD measurements due to either over titration or missing titration-volume data. To correct the CTD measurements we used linear regression between CTD measurements and Winkler titrations. Outliers were removed using 2 x standard deviation (SD) of the difference between Winkler-titrations and CTD as the outlier limit. If the point's residual value (value of the difference between the regression line and the plotted point) was outside this limit, it was considered an outlier. After removal of outliers, the SD was calculated again for the new dataset and the whole procedure was repeated until no more datapoints were considered outliers.

A total of 11 outliers were removed by this method, resulting in the regression line: y = 0.035 + 1.04x (Figure 7.6).

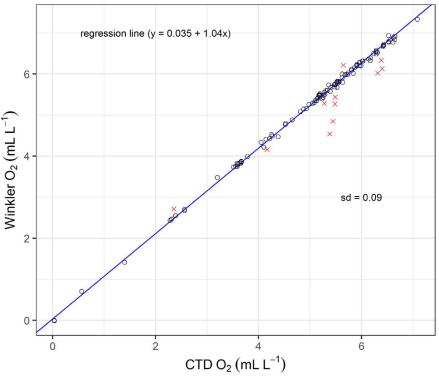


Figure 7.6. Linear regression between CTD oxygen values and Winkler-titration oxygen values. O marks general datapoints, Xmarks datapoints considered outliers and the blue line is the regression line of the model without outliers. sd refers to the standard deviation without outliers.

7.1.2 salt calibration

To calibrate the CTD conductivity sensor we collected a total of 114 water samples from 68 different CTD stations to measure salinity. Before water collection, the sample flask and stopper were rinsed three times with the sample water. The flask was filled, stoppered and the samples were furthermore stored in room temperature. We used the Portasal 8410A Salinometer to calculate salinity of our water samples. The water bath temperature was set to 24 °C, and the samples were at room temperature (bath temperature \pm 5 °C).

The closer the water sample is to the water bath temperature the better, but with a low flow rate the temperature will have time to adjust in the machine. A high difference will result in higher uncertainty, which is an error source. It is also important to make sure there are no

air bubbles in the conductivity cells, as this is another error source. Other error sources include not properly rinsing bottles when taking samples, touching or improper wiping of the tube that goes into the sample, improper- or not enough flushing before reading (3-4 times), and other human errors. We only accepted readings with standard deviations below 0,0002, but they were mostly between 0-0,00004. Later, we cross-checked the values with the CTD data to calibrate. The salinity data did not require a calibration. All calibrations can be found in Table (2.1).

In appendix, list of all CTD stations

7.1.3 Nutrients

We collected at total of 29 water samples at five different CTD-stations for nutrient analysis (Figure 7.7). We used 20 ml polyethylene scintill bottles to collect the water samples. The bottle and the stopper were rinsed three times before water collection. We added 0.20 ml chloroformto the water sample and stored them in the fridge until after the cruise.

The samples were sent to the Institute of Marine Research (IMR) and analyzed for concentration of nitrite, nitrate, phosphate and silicate by gas segmented continuous flow analysis (Gundersen and Lunde, 2015).

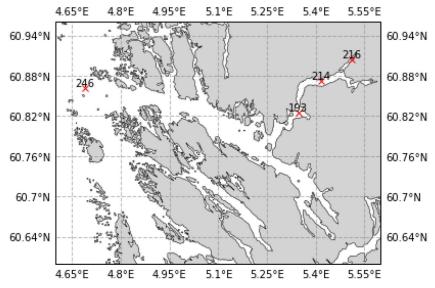
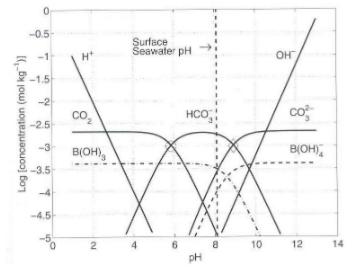



Figure 7.7. Overview of the locations where water samples for nutrient analysis were collected. An additional station for nutrient samples (st. 167) was located at the same location as st. 246. NB! In our datafiles, st. 215 rather than st 216 was listed as a station for nutrient samples. We believe, however, that there has been a mix-up of st. 215 and st. 216, and have chosen to include the latter in this map.

7.1.4 Dissolved inorganic carbon (DIC)

Dissolved inorganic carbon (DIC) is the amount of carbonate in the seawater: DIC = $[H_2CO_3] + CO_2(aq) + [HCO_3^{-1}] + [CO_3^{2-1}]$

The distribution of the different carbon species are determined by the pH (see Figure 7.8).

Figure 7.8. Bjerrumplot. Showing how carbon species changes with pH (Turley et al., 2004)

We collected at total of 51 water samples at seven different CTD-stations for dissolved inorganic carbon analysis (Figure 7.9). The tapping of water for the carbon samples was done in 250 mL bottles. First, we filled out an enclosed sample log. Then a plastic tube was attached to the drain valve of the Niskin bottle in order to tap the water. The air vent and the drain valve was opened, and the tube was squeezed so that all air bubbles disappeared. Further, the bottle was rinsed 2-3 times with seawater. After this the tube was lowered into the bottom of the bottle and filled completely. The water was then let to overflow for as long as it took to fill. The bottles were then checked for air bubbles and the tube was taken out of the bottle. After all this we added (approximately 0.02 mL) og HgCl₂ to the seawater in the bottle. Then two pea-sized globs of grease were put on the stopper, and the stopper put in the bottle. The stopper was turned slightly to distibute the grease. The bottle was then turned upside down a couple of times to mix. The bottles were stored in a dark and cool environment and returned to the lab after the cruise for further handling.

At the lab a peristaltic pump transferred seawater from the bottles into pipettes (see setup in Figure 7.10). The pipette measures aboute 20 mL before it is emptied into the stripper. Further, phosphoric acid is added to the stripper which then reacts with the DIC and forms CO₂. The CO₂ gas is then transferred into the coulometer cell, which turns the solution acidic. The color changes from blue to clear at this point. A base is formed by a current flow, which then removes the acid and the solution returns to its blu color. An indicator will show when the color is restored and then the amount of CO₂ can then be calculated. The current needed is equivalent to the amount of CO₂ (Mintrop, 2012; Hartman and Roberts, 2011).

Three dummy samples (left seawater from the previous samples) were analysed before the samples. These dummies were calibrated by a know standard (CRM).

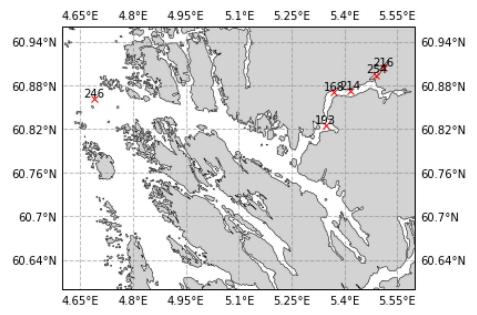


Figure 7.9. Overview of the locations where water samples for dissolved inorganic carbon (DIC) were collected. An additional station for DIC samples (st. 167) was located at the same location as st. 246. NB! In our datafiles, st. 215 rather than st 216 was listed as a station for DIC samples. We believe, however, that there has been a mix-up of st. 215 and st. 216, and have chosen to include the latter in this map.

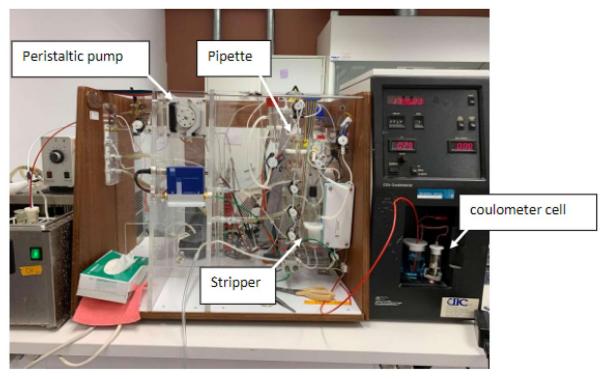


Figure 7.10. VINDTA 3D at GFI

7.1.5 Stable isotope analysis

From a stable isotope analysis important details of the fjord hydrology can be deciphered. An analysis of the isotope composition can help to reveal the source of the water and atmospheric pathways (FARLAB, date). The isotope composition can help answer where rain comes fromor how the water becomes a cloud. This is important knowledge for understanding precipitation extremes and the effects of climate change (Sodemann, 2018).

Elements, such as oxygen and hydrogen, can naturally be found in different configurations, called isotopes. Each of these configurations have their own molecular weight. This is due to the fact that they have different amounts of neutrons (Piana, 2020).

The most common isotope of water is H_2160 . It has 2 hydrogen atoms with 1 proton and 1 neutron each, and one oxygen atom with 8 protons and 8 neutrons. This isotope is called a heavy stable isotope. H_2180 is another isotope, but with a slightly heavier mass. In nature, there is about 99,77 % H_2160 , 0,20 % of H_2180 and 0,03 % of HDO (heavy water).

Isotopes of different mass will react differently fromeach other (Sodemann, 2020). The heaviest isotopes (like HDO) can be expected to be found in relatively more abundance in solid water than in gas state. This is because in vapor state the chemical bonds are weaker. It is also because the heaviest isotopes will be precipitated first while in clouds. Heavier isotopes will also have a harder time rising in the air than lighter isotopes. Heavier isotopes

have lower diffusion velocities and lower water vapor pressure. Due to this heavier isotopes will fractionate during phase transitions. The isotopic composition of the atmospheric water depends on their complex phase transition history.

The ratio between $H_{2}160$ and $H_{2}180$ can be compared with an isotopic ratio standard made by IAEA in Vienna. In this standard the ratio of an isotope to $H_{2}160$ is denoted with \pm . The isotope mass ratio analysis was done by an Isotope RatioMass Spectometer at FARLAB. The ± 18 is calculated as:

$$\delta^{18}O = \left(\frac{R_{sample}^{18}}{R_{standard}^{18}} - 1\right) * 1000\%$$

where R^{18} is $\frac{H_2180}{H_2160}$.

Diffusion speed is also important. Heavier isotopes evaporate later than lighter isotopes. In evaporation and strong winds there will be less heavier isotopes in the water vapor than without. The d-excess can tell us where diffusion speed has been important for the isotope content distribution. d-excess can be found with: $d - excess = \delta D - 8 \times \delta^{13} O[\%]$

We took 22 water samples for stable isotope analysis. 14 of these were taken on land on the meteorological fieldtrip. The rest were taken at the surface at different outlets in the Masfjord. The samples from the meteorological fieldtrip were mostly taken from rivers around theMasfjord. The samples were collected into 8 mL vials. Afterwards there were filtered and put into 1,5 mL vials for analysis at FARLAB.

At FARLAB the samples were filtered, if needed, with 25mm Nylon filters with a 0.2 um PTFE membrane (part #514-0066, VWR, USA), and transferred to 1.5 ml glass vials with rubber/ PTFE septa (part #548-0907, VWR, USA) (Morkved, 2020). An autosampler (A0325, Picarro Inc) transferred ca. 2ul per injection into a high-precision vapourizer (A0211, Picarro Inc, USA) heated to 110°C. After blending with dry N2 (< 5 ppm H2O) the gas mixture was directed into the measurement cavity of a Cavity-Ring Down Spectrometer (L2140-i, Picarro Inc) for about 7min with a typical water concentration of 20 000 ppm. Memory effects were reduced by two times measuring a vapour mixture at a mixing ratio of 50 000 ppm, obtained from 2 injections of 2 ul for 5 min at the beginning of each new sample vial (Morkved, 2020). Thereafter, another 8 injections of 2 ul per sample were measured individually as described above, and averages of the last -1 injections were used for further processing.

Three standards were measured at the beginning and end of each batch (Morkved, 2020). Batches consisted typically of 20 samples, with drift standard FIN ($\pm D$: -81.08 \pm 0.40 permil, \pm 18O: -11.68 \pm 0.06h, \pm 17O: 0.00 \pm 0.00h), measured typically every 5 samples. For calibration according to IAEA recommendations, the laboratory standards GLW ($\pm D$: -307.91 \pm 0.81 h, \pm 18O: -40.09 \pm 0.04h, \pm 17O: 0.00 \pm 0.00h), BERM ($\pm D$: 6.57 \pm 0.30 permil, \pm 18O: 0.56 \pm 0.05 h, \pm 17O: 0.00 \pm 0.00h), were used, and averaged over the beginning and end of each batch for calibration.

An empirical memory correction to represent fast and slow memory compartments in the system has been applied (Morkved, 2020). The correction is based on a fit of the 3-parameter function $f(i) = c0 * (b \exp(-alpha*i)+(1-b) \exp(-beta*i))$, where c0 is the initial memory amplitude (calculated), b is the weight between the fast and slow component, and alpha and beta are the decay constants of the fast and slow component, respectively, to a sufficiently long sequence of injections (typically 12 injections from all standard measurements).

8 Mini CTD and Helgeboat

The 6th and 7th of March we used a mini-CTD at five different stations partitioned at the different sections in Masfjorden. The mini-CTD measured salinity, pressure and temperature at the same cross sections that we towed a construction called Helgeboat.

The Helgeboat is a "homemade" construction consisting of the different instruments hanging in a rope under the boat at different depths. We towed the construction after the small boat we were sitting in across the fjord. We did one cross section each day at two different locations. The homemade construction we called "The Helgeboat" named after the constructor. We used this to obtain higher spatial resolution of the data since we only had 5 mini-CTD stations.

The structure of the instruments under the boat was different for the two days. The first day we had an instrument that measures temperature, pressure and conductivity at the surface and temperature loggers further down. The second day the upper three instrument was the same as day 1, but we changed the fourth instrument to an instrument that measures temperature, pressure and conductivity. Since we had pressure at the lowermost instrument, we could calculate the actual depth to the different instruments. These depths are more accurate than the rope length (see Figure 8.2).

Figure 8.1. picture of the Helgeboat at the surface when we dragged it across the fjord

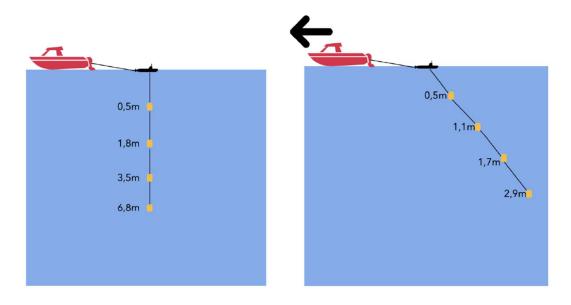


Figure 8.2. A figure that shows the structure of the Helgeboat and how the depths changes when it moves forward

The mini-CTD measured salinity, pressure and temperature. To obtain higher spatial resolution we towed the Helgeboat across the same section as we used the mini-CTD shown in Figure 2.

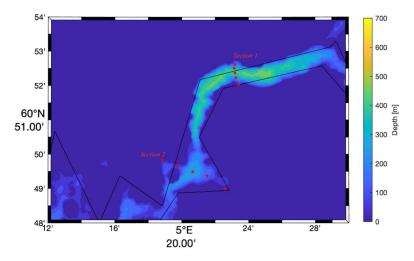


Figure 2: Map of the two cross sections where we took the mini CTDs and dragged Helge's boat

Number	When	Lat	Lat(matlab)	Lon	Lon(matlab)
1	13:50	60°52,738′ N	60,879°	005°23,186´E	5,386°
2	14:02	60°52,507′ N	60,875°	005°23,141´E	5,386°
3	14:12	60°52,376′ N	60,873°	005°23,191´E	5,387°
4	14:20	60°52,233´ N	60,871°	005°23,253´E	5,388°
5	14:28	60°52,036′ N	60,867°	005°23,402´E	5,390°

Table 12. First cross-Masfjord section, Friday 6. March

Number	When	Lat	Lat(matlab)	Lon	Lon(matlab)
1	14:42	60°49,005′ N	60,8167°	005°22,589´ E	5,376°
2	14:53	60°49,377′ N	60,823°	005°21,518´ E	5,359°
3	14:58	60°49,492′ N	60,825°	005°20,664´ E	5,344°
4	15:06	60°49,667´ N	60,828°	005°19,743′ E	5,329°
5	15:15	60°49,844′ N	60,831°	005°18,833′ E	5,314°

Table 13. Second cross-Masfjord section, Saturday 7. March

Table 14. Helge's boat instrumentation for section 1

What	Distance from surface	Measures
SBE37 - 9945	0	
SBE 56 (temperature logger) - 4312	180 cm	Т
SBE 56 (temperature logger) - 4311	350 cm	Т
RBR	680 cm	Т,р

Table 15. Helge's boat instrumentation for section 2

What	Distance from surface	Measures
SBE37 - 9945	0	
SBE 56 (temperature logger) - 4312	180 cm	Т
SBE 56 (temperature logger) - 4311	350 cm	Т
SBE37 - 5225	680 cm	

9 Current Profiling using Vessel-mounted ADCP (VMADCP)

A vessel-mounted Acoustic Doppler Current Profiler (VMADCP) was used for current measurements in the water column. The VMADCP transmits acoustic signals that are backscattered by particles in the water. The instrument calculates the current speed at various depths by calculating the Doppler shift between the transmitted signal and the reflected signal.

The VMADCP measured the current profile throughout the whole cruise. It was set in narrowband mode, that is with 50 bins of length 8.0 meters. By using the narrowband mode, the instrument receives a broad range of signals, but with lower resolution. The blanking distance was set to 4.0 meters. The sampling rate was set to 1.10 seconds.

The ADCP-system onboard automatically processed the signals from the VMADCP. The Common Ocean Data Access System (CODAS) was used to calculate current velocities. The output from CODAS was speed, position, and heading of the currents throughout the water column.

9. Microstructure Profiling (GEOF337)

Microstructure Profilers (MSS profilers) provide high-resolution temperature, salinity, and pressure data, as well as velocity shear for a one-dimensional water column. The data is collected by multiple sensors at the lower-end of the instrument. It is intended to be deployed directly vertically from a stationary vessel, and the data is only considered reliable when the instrument is experiencing freefall. If the instrument were to collide with the ocean bottom, the sensors at the tip of the profiler could be damaged. Constraining the freefall period of the profiler is, therefore, imperative to obtain a reliable profile of the water column, without compromising the future functionality of the instrument.

To achieve this, the student scientists and crew depended on communication between those monitoring the depth of the MSS profiler and those controlling the freefall. Student scientists were responsible for running the computer program, using it to monitor the depth, and saving the MSS data. The GFI technician Helge, accompanied by at least one crew member, was responsible for ensuring freefall in the instrument, by feeding the submerged profile rope (in this case, cord) via a machine on the ship. Helge was also able to stop feeding more rope, which would allow the MSS to continue freefalling, or to begin pulling the profiler up, which would disrupt freefall, but prevent a dangerous collision.

It was the responsibility of the student scientists to communicate to Helge when the deployed profile was 1) suitably deep for those feeding slack to the instrument to stop doing so and 2) in jeopardy of colliding with the ocean bottom. Both communications were done via a mechanical buzzer signal. Variability in the currents, basin depth, and human response time have resulted in variation in the total depth surveyed by the MSS profiler while at the same station.

One of the objectives during this cruise was to detect the effect of tides over the sill and how this might influence the vertical mixing. To do that, we established three stations along the Sill in Masfjorden, where we did 9 casts on each station during the tidal cycle. The locations and information regarding the position and time, Error! Reference source not found.

ST	YEAR	MONTH	DAY	HOUR	Min	Depth	LON	LON	LAT	LAT
							deg	min	deg	min
2	2020	3	3	7	24	111	60	48,360	5	19,262
3	2020	3	3	7	45	70	60	<u>48,292</u>	5	18,098
4	2020	3	3	7	58	205	60	48,205	5	16,681
5	2020	3	3	8	30	159	60	48,340	5	19,215
6	2020	3	3	8	54	100	60	48,290	5	17,908
7	2020	3	3	9	7	205	60	48,210	5	16,674
8	2020	3	3	10	2	120	60	48,396	5	19,070
9	2020	3	3	10	17	75	60	48,276	5	18,013
10	2020	3	3	10	31	205	60	48,229	5	16,608
11	2020	3	3	11	36	120	60	48,422	5	19,172
12	2020	3	3	11	57	103	60	48,311	5	17,815
13	2020	3	3	12	10	205	60	48,221	5	16,755
14	2020	3	3	13	1	126	60	48,458	5	19,014
15	2020	3	3	13	43	93	60	48,258	5	17,891
16	2020	3	3	13	56	205	60	48,245	5	16,557
17	2020	3	3	14	32	149	60	48,319	5	18,96
18	2020	3	3	14	59	78	60	48,281	5	17,999
19	2020	3	3	15	13	205	60	48,22	5	16,775
20	2020	3	3	16	17	93	60	48,312	5	19,226
21	2020	3	3	16	33	95	60	48,289	5	17,828
22	2020	3	3	17	3	205	60	48,253	5	16,745
23	2020	3	3	17	44	134	60	48,388	5	19,096
24	2020	3	3	18	1	82	60	48,282	5	17,979
25	2020	3	3	18	14	206	60	48,21	5	16,673
26	2020	3	3	18	42	131	60	48,41	5	19,21
27	2020	3	3	18	59	74	60	49,55	5	20,82
28	2020	3	3	19	11	206	60	48,23	5	16,58

 Table 16: MSS stations corresponding to the time series over the Masfjorden Sill. Blue=1st station, Red=2nd

 Station, Black=3d station. The casts were repeated 9 times along the tidal cycle.

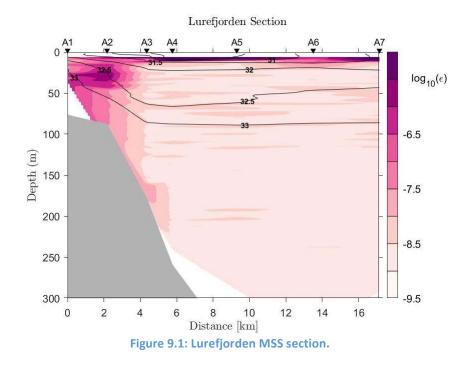

During the following days we did two sections of MSS casts along Masfjorden and Lurefjorden. The latter showed non expected results in terms of mixing profiles that can be used as basis for further cruises. The list of the stations can be found in Table 17.

 Table 17 Lurefjorden transec. Station location and time information.

ST	YEAR	MONTH	DAY	HOUR	Min	Depth	LON	LON	LAT	LAT
							deg	min	deg	min

29	2020	3	5	13	22	309	60	39,74	5	13,02
30	2020	3	5	13	55	442	60	41,12	5	10,19
31	2020	3	5	14	33	365	60	42,51	5	6,52
32	2020	3	5	15	1	259	60	43,47	5	3,14
33	2020	3	5	15	23	178	60	43,85	5	1,79
34	2020	3	5	15	50	87,8	60	43,78	4	59 <i>,</i> 39
35	2020	3	5	16	9	76,6	60	44,07	4	57,07

The section measurements regarding the vertical mixing can be seen in, Error! Reference source not found.:

The Masfjorden section stations are listed in Table 18.

 Table 18 Masfjorden section information. Section positions and time.

ST	YEAR	MONTH	DAY	HOUR	Min	Depth	LON deg	LON min	LAT deg	LAT min
36	2020	3	6	7	12	148	60	47,381	5	16,30

37	2020	3	6	7	37	150	60	48,31	5	19,13
38	2020	3	6	7	59	298	60	49,54	5	20,84
39	2020	3	6	8	27	426	60	50,98	5	20,93
40	2020	3	6	8	59	470	60	52,20	5	22,09
41	2020	3	6	9	31	482	60	51,35	5	24,89
42	2020	3	6	10	7	280	60	52,89	5	28,40
43	2020	3	6	10	32	187	60	52,51	5	29,57
44	2020	3	6	17	16	188	60	52,32	5	33,14
45	2020	3	6	17	38	191	60	52,00	5	30,54

The section of the vertical mixing coefficient are presented in Figure 9.2 Masfjorden MSS section measurements..



Figure 9.2 Masfjorden MSS section measurements.

The location of the stations where MSS casts were done can be seen in Figure 9.3 MSS station positions in Masfjorden (red) and Lurefjorden (magenta). and the time series in Figure 9.4.

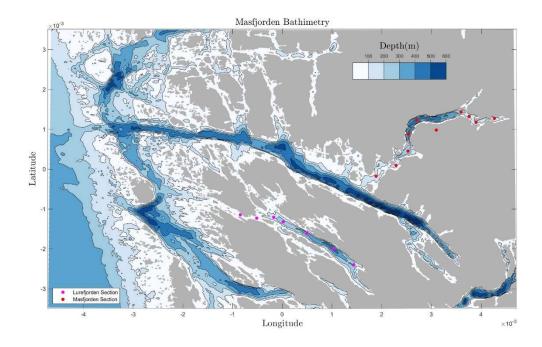


Figure 9.3 MSS station positions in Masfjorden (red) and Lurefjorden (magenta).

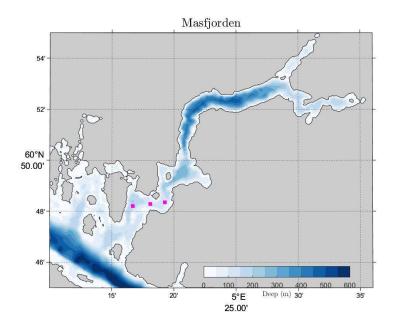
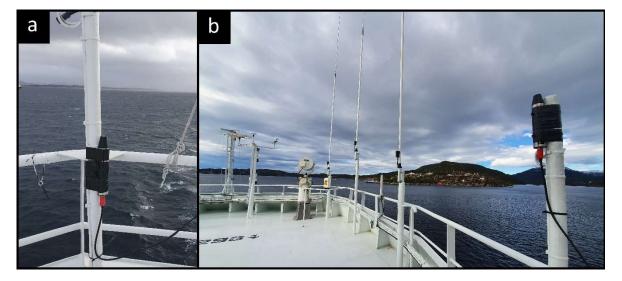


Figure 9.4 Masfjorden MSS time series. Station locations.

12. Isotopes (GEOF232)

Short description of the sampling procedure


Table: position, time & sample number

13. LIDAR (GEOF232)

14. Irradiance and light absorbance

Surface irradiance

Surface irradiance was measured using a hyperspectral TriOS Ramses radiometer with a measurement frequency of one measurement every 5th minute. The surface sensor was set up on the roof of the ship's wheelhouse, away from direct light from the ship (Figure 8a). It was adjusted to a better position on March 3rd (Figure 8b) and usable data is consequently limited to those collected after March 3rd 14:00 UTC.

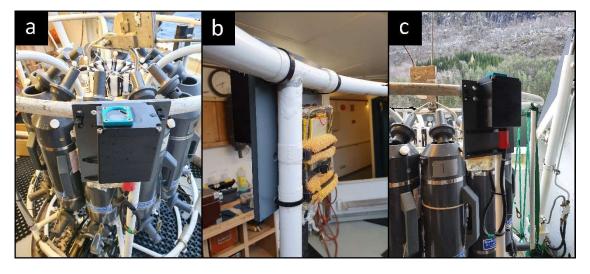
Figure 9.5. Photographs of the Ramses TriOS radiometer set-up. a) initial placement of sensor which was not ideal for surface irradiance measurements b) final sensor placement.

Underwater irradiance

All underwater irradiance measurements were completed at stations in the deepest basins of the fjords: Masfjorden (60°52.366 N, 05°24.991), Haugsværfjorden (60°54.268 N, 05°30.598 E) and Lurefjorden (60°41.100 N, 05°10.258). During underwater measurements the ship was positioned with the starboard side (from which equipment was lowered) in the direction of the sun.

TriOS radiometer measurements

Underwater, downwelling irradiance was measured using a TriOS Ramses hyperspectral radiometer. The sensor was mounted on a metal frame and lowered into the water at a constant speed (exact speed unknown) to depths between 70 and 100 m (Table 16). When the sensor was back at the surface, we repeated the procedure to get an additional set of measurements.


Table 19. Overview of irradiance measurements with the TriOS Ramses radiometer. Start time is the time we began lowering the sensor into the water, and stop time is the time the sensor was back on deck (after being lowered to max. depth twice). Max. depth is the maximum depth to which the sensor was lowered.

Fjord	Date	Start time - stop time (UTC)	Max. depth (m)
Masfjord	04.03	14:36 – 15:00	ca. 100
	06.03	13:31 – 13:49	ca. 80
Haugsværfjord	04.03	13:41 - 14:04	ca. 90
Lurefjord	05.03	12:05 – 12:19	ca. 70

During measurements of underwater irradiance with the TriOS radiometer, the surface sensor was set to measure in intervals of one measurement per second. The underwater sensor was set to the same setting but could only measure once per 2nd second.

Prototype light sensor (LOw Light integrating sensor, LOL)

To get an indication of underwater, downwelling irradiance at greater depths, a sensitive broadspectrum prototype light sensor (LOL) was used (developed by Thor Klevjer). Keep in mind that this prototype is still under testing and results must be interpreted thereafter. The sensor and its external battery were attached to the CTD-frame (Figure 9a-c).

Figure 9.6. Photographs of light sensor prototype set-up. a) sensor overview; b) battery attachment to the CTD-frame; c) sensor attachment to the CTD-frame.

The LOL was then lowered into the water with the CTD at a constant speed of 1 m/s and had a measurement frequency of one measurement every 5th second. The surface irradiance TriOS sensor was supposed to make simultaneous measurements every second but was unfortunately set to measure every 5th minute at three out of seven stations (Table 17).

Fjord	Date	Start time – stop time (UTC)	CTD station	Depth (m)	Surface sensor time interval
Masfjord	04.03	15:15 – 15:41	218	484	5 min
	06.03	13:11 – 13:26	256	478	1 sec
	07.03	11:33 – 12:06	266	480	1 sec
Haugsværfjord	04.03	11:55 – 12:12	216	123	5 min
	04.03	12:50 - 13:03	217	123	5 min
	06.03	12:11 – 12:30	255	123	1 sec
Lurefjord	05.03	12:26 - 13:06*	245	442	1 sec

Table 20. Overview of irradiance measurements with the LOL. Start time is the time when the CTD went into the water and stop time is the time when CTD was back on deck. Depth is the bottom depth at the station and surface sensor time interval is the measurement.

*the CTD was lowered twice at one station and remained max. depth for five minutes. Stop time was estimated based on this knowledge, station depth and winch speed (1 m/s).

Light absorbance

To get an indication of light absorbance at different depths and oxygen conditions, water samples were collected in the rosette-mounted niskin water collectors and measured for absorbance in a spectrophotometer (UV/VIS Spectrometer Lambda 2, Perkin Elmer) (Table 18).

Table 21. Overview of the water samples for absorbance readings. "Sample" refers to the water samples and "measurement" refers to the absorbance reading in the spectrophotometer. All sample depths are rounded to the nearest 5, apart from the deepest sample (marked in bold) ca. 10 m above bottom. Samples from sample depths that are through-lined were lost during measurements.

Fjord	Sample date	CTD statio n	Sample depths (m)	Analysis date	ca. hours between sampling and measurement
	02.03	179	5, 10, 20 , 50, 100, 150, 200, 300, 400, 450 ² , 478	03.03	19
Masfjord			5 , 10 , 20, 40 , 60, 100*, 150, 200, 300 , 400, 450 , 484	06.03	50
	07.03	266	5, 15 , 20, 40, 70, 160, 200, 250 , 350*, 390, 472 ²	07.03	9
Haugsværfjor	04.03	217	5 ² , 10 ² , 20 ² , 40 ² , 80 ² , 113²	05.03	32
d	06.03	255	5, 10, 20, 30, 60, 70, 80*, 90 , 100 , 112	07.03	32

*niskin bottle did not fire ²two samples were collected at this depth

Water samples were collected in plastic bottles, which were rinsed three times in the sample water before sampling. The samples were stored in darkness and acclimatized to room temperature before light absorbance was measured at 400, 420, 440, 450, 460, 480, 500 and 550 nm in the spectrophotometer (blank control sample: Milli-Q water).

The initial plan was to have a total of 4 absorbance readings of each water sample: two successive readings of each cuvette (10 cm quartz cuvette), and two cuvettes from each water sample. However, due to multiple challenges while measuring, several water samples (n = 9) had to be discarded (Table XX3). Water samples from CTD-station 218 should not be used in any further analysis due to the long time between sampling and absorbance reading.

15. Drifters

Four drifters were deployed on 3rd of March in the outer part of Masfjorden. The drifters are handmade by an institute technician from a buoy and a selection of supplies from a hardware store. There are GPS trackers attached to the drifters that record the position every 5 minutes, and the position and speed can be monitored via a webpage. The drifters were put out to investigate the surface currents in Masfjorden with strong winds.

Drifters 2 and 3 were put out at roughly the same location, but Drifter 2 beached and was recovered the next morning. Drifter 1 was redeployed once because it came to close to land, Drifter 4 had to be redeployed twice for the same reason and then went out to Fensfjorden, it was also recovered at the next morning.

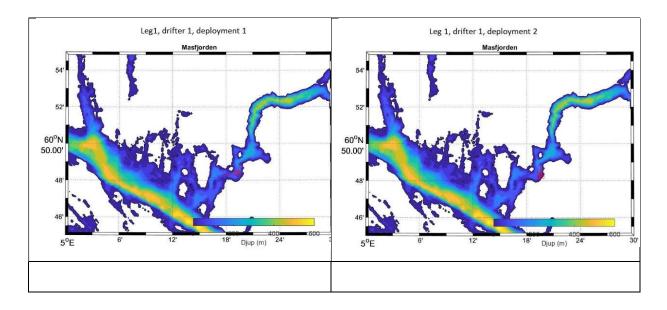

In leg 2 all the drifters were deployed at the same position, but drifters 3 and 4 was lowered 10 meters below surface. The drifters were deployed in calm weather conditions and appeared to follow an estuarine circulation before being affected by the wind and then beaching. The drifters was recovered the next day and were out in roughly 23 hours.

Table 22. Time and Position of the deployment and recovery of Drifters, leg 1 Table 23. Time and Position ofthe deployment and recovery of drifters, leg 2.

	Deployment				Recovery				
		Time							
Drifter	Date	(UTC)	Latitude	Longitude	Date	(UTC)	Latitude	Longitude	
1	06.03.2020	13:21	60°52 <i>,</i> 404' N	5°23 <i>,</i> 450' E	07.03.2020	12:20	60°52,068' N	5°23,796' E	
2	06.03.2020	13:21	60°52 <i>,</i> 404' N	5°23,450' E	07.03.2020	12:15	60°52,038' N	5°23,556' E	
3	06.03.2020	13:21	60°52 <i>,</i> 404' N	5°23,404' E	07.03.2020	12:05	60°52,074' N	5°20,88' E	
4	06.03.2020	13:21	60°52 <i>,</i> 404' N	5°23 <i>,</i> 400' E	07.03.2020	12:01	60°52,272' N	5°21,318' E	

Table 24. Time and Position of the deployment and recovery of drifters, leg 2.

	Deployment				Recovery				
Drifter	Date	Time (UTC)	Latitude	Longitude	Date	Time (UTC)	Latitude	Longitude	
1	03.03.2020	12:04	60°48.988' N	5°19.847' E	03.03.2020	14:35	60°46.950' N	5°19.388' E	
. 1	03.03.2020	14:38	60°48.815' N	5°19.663' E	03.03.2020	17:18	60°48.815' N	5°19.663' E	
2	03.03.2020	12:12	60°47.999' N	5°17.727' E	04.03.2020	07:18	60°49.260' N	5°8.640' E	
3	03.03.2020	12:14	60°47.934' N	5°17.618' E	03.03.2020	17:50	60°47.900' N	5°16.002' E	
	03.03.2020	12:19	60°46.868' N	5°15.241' E	03.03.2020	14:20	60°47.109' N	5°13.740' E	
4	03.03.2020	14:25	60°46.950' N	5°16.300' E	03.03.2020	15:48	60°46.783' N	5°15.216' E	
	03.03.2020	15:53	60°46.769' N	5°14.993' E	04.03.2020	07:18	60°47.837' N	5°15.801' E	

Appendix A: Cruise narrative

The following log is timestamped in UTC. A shortened text summary is provided at the end

Shift schedules:

GEOF 232 had a change of students on the 5/3; the shifts are denoted as leg 1 and leg 2, respectively.

Time	Shift
05:00-11:00	GEOF 337 Students
11:00-17:00	GEOF 232 students
17:00-23:00	GEOF 337 Students
23:00-05:00	GEOF 232 Students

Monday 02.03

- > 08:00 (UTC) Students boarded the ship
- > 09:00 (UTC) Safety and ship information meeting and tour
- > 10:10 (UTC) Briefing in the CTD-room
- > 11:00 (UTC) Start of the first ordinary shift
- > 13:13 (UTC) First CTD station (Full CTD):
- > 16:25 (UTC) Recovery of mooring in the inner part of Masfjorden:

17:00 Shift change

- > 17:00 (UTC) CTD station 168
- > 18:05 (UTC) MSS test (successful)
- > 19:40 (UTC) CTD station 169 (M35)
- > 20:02 (UTC) CTD station 170 (M34)
- > 20:24 CTD station 171 (M33)
- > 20:58 CTD station 172 (M32)
- > 21:23 CTD station 173 (M31)
- > 21:40 CTD station 174 (M30)
- > 22:12 CTD station 175 (M29)
- > 22:38 CTD station 176 (M28)

23:00 Shift Change (Tuesday 03.03 local time)

- > 23:05 (UTC) CTD station 177 (M27)
- > 23:57 (UTC) CTD station 178 (M26) aborted
- > 00:14 (UTC) CTD station 179 (M26)
- > 01:14 (UTC) CTD station 180 (M25)
- > 01:50 (UTC) CTD station 181 (M24)
- > 02:26 (UTC) CTD Station 182 (M23)
- > 03:01 (UTC) CTD station 183 (M22)
- > 03:29 (UTC) CTD station 184 (M21)
- > 03:58 (UTC) CTD station 185 (M20)

> 04:30 (UTC) CTD station 186 (M19)

05:00 Shift change

- > 05:09 (UTC) CTD station 187 (M18)
- > 5:23 (UTC) CTD station 188 (M17)
- > 05:43 (UTC) CTD station 189 (M16)
- > 6:15 (UTC) CTD station 190 (M15)
- > ??:?? CTD station 191, station does not exist, misunderstanding with bridge crew
- > 07:25 (UTC) Start of the MSS time series. First section
- > Started analyzing oxygen samples
- > 08:30 (UTC) MSS time series, second section
- > Transferred the data from the mooring instruments (SBEs) to the computer.
- > 10:00 (UTC) MSS time series, third section

11:00 Shift change

- >12:00 (UTC) Boarding small boat for drifter deployment
- >12:40 (UTC) returned from drifter deployment
- >14.20 (UTC) Recover drifter 4 at (60°47.109', 05°13.740')
- > 14:25 (UTC) Redeployed drifter 4 at (60°46.950', 5°16.300')
- > 14:35 (UTC) Recover drifter 1 at (60°40.039', 5°19.388')
- > 14:38 (UTC) Redeployed drifter 1 at (60°48.815', 5°19.663')
- > 15:46 (UTC) CTD test deployment with light sensor, at m14
- > 15:48 (UTC) Recover drifter 4 at (60°46.783', 5°15.216')
- > 15:53 (UTC) Redeployed drifter 4 at (60°46.769', 5°14.993')
- > 17:00 UTC Leaving with lightboat to pick up drifters.
 - Two drifters successfully recovered, third presumed beached

17:00 Shift change

>5:18-5:50 Drifter recovery (nr.1 and nr.3)

> 19:45 (UTC) Minor issue with charger/computer shut down caused loss of a few journal entries relating to the last two hours. The CTD log was not compromised in the shutdown.

> 19:56 (UTC) CTD deployed at M16 (60°48.536', 5°20.777'). 12 bottles of oxygen. Error in bottle labeling

> 20:05 (UTC) Seaguards prepared to start logging 08.03.2020 08:00:00 UTC.

> 21:19 There were multiple excel files (i.e. 'log' and 'log copy'), there were stations in copy but not in the original, so we updated the 'log' and saved a backup, with the date and Norwegian time.

Because of the misunderstanding noted in three shifts before, there is no saved data for station 191. We are assuming there was a glitch or else the computer was compensating for another procedure, such as one done by Martine or Lise.

> 21:00 Victor and Ole started processing Oxygen samples from M16

- > 21:18(UTC) CTD station 195 (M10)
- > 21:34 (UTC) CTD station 196 (M09)

> 21:58 (UTC) CTD station 197 (M08)

- > 22:14 (UTC) CTD station 198 (M07)
- > 22:31 (UTC) CTD station 199 (M06)

23:00 Shift change (Wednesday 04.03 local time)

- > 22:57 (UTC) CTD station 200 (M05)
- > 23:37 (UTC) CTD station 201 (M04)

- > 00:08 (UTC) CTD station 202 (M03)
- > 00:42 (UTC) CTD station 203 (M02)
- > 00:57 (UTC) CTD station 204 (M01)
- > 01:20 (UTC) CTD cleaned and filled with chlorine
- > 02:10 (UTC) CTD rinsed
- > 02:16 (UTC) CTD station 205 (F25)
- > 02:40 (UTC) CTD station 206 (F24)
- > 03:03 (UTC) CTD station 207 (F23)
- > 03:28 (UTC) CTD station 208 (F22)
- > 03:58 (UTC) CTD station 209 (F21)
- > 04:18 (UTC) CTD station 210 (F20)
- > 04:43 (UTC) CTD station 211 (F19)

05:00 Shift change

> Plan of shift: an early morning of CTDs with bottom level salinity, with sampling two salinity samples every 2nd CTD and 3 oxygen samples every 3rd CTD. Retrieving the mooring is intended, but that might be delayed in hopes of retrieving the two remaining drifters.

> 5:17 (UTC) CTD station 212 (F18)

> Salinity Bottle note: the ship has lent us another box of salinity bottles (box 42) they are numbered starting with 116. The box is in the Halvtørr room (the room between the oxygen titration lab and the CTD itself—the room with all the shoes). This means that there are now 31 more available salinity samples

> 5:55 (UTC) CTD station 213 (F17)

> Plans (6:21 UTC): no more CTDs for a while; first we will retrieve the drifters and then the mooring. Then we will do a full CTD station and then we will calibrate the microCATS.

> Only the MS30... computer is able to read the microCATS data therefore the CTD log and Cruise diary is now MOVED to BollE...

> Written 8:11 (UTC): a team of three students retrieved the two remaining drifters and took GoPro and Cellphone videos in the process.

> 8:20 UTC: Masfjorden Sill Mooring recovered. Weird organisms on it.

> 8:45 UTC A white bucket of saltwater containing a few of these organisms were collected by a few students for Martine; the rest were returned to the ocean (in hopes of letting the organisms live)

> 8:20 – 9:20 Jacinta, Kjersti, and the crew took some photos during this time

> 9:20 Bucketed organisms at this point are believed to include Common Starfish (Asterias Rubens), Crawfish/Crayfish (Norwegian: "kreps"), sea urchins,

> 9:09 (UTC) CTD station 214 (M26)

> 10:32 (UTC) CTD station (M28)

11:00 Shift change

> 11:55 (UTC) CTD station216 (H3A)

>12:50 (UTC) CTD station217 (H3B)

> 13:41 (UTC) H3 2x light measurements (Station 32). Down to approx. 80 m.

> 14:36 (UTC) m26 2x light measurements (Station 33). Down to approx. 100 m.

> 15:15 (UTC) CTD station 218 (M26), with sensitive light sensor

> 16:32 (UTC) CTD station 219 (M13)

> 16:48 (UTC) CTD station 220 (M12)

17:00 Shift change

- > 17:02 (UTC) CTD station 221 (M11)
- > 17:46 (UTC) CTD station 222 (F16)
- > 18:21 (UTC) CTD station 223 (F15)
- > 19:02 (UTC) CTD station 224 (F14)
- > 19:41 (UTC) CTD station 225 (F13)

> 20:10 (UTC) Note: Microcat #8... has been set to start recorded data for Saturday March 7th starting at 12:00 UTC. This is summarized in the SBE...8... file on the computer that handles the MSS procedure.

- > 20:21 (UTC) CTD station 226 (F12)
- > 20:54 (UTC) CTD station 227 (F11-M4)
- > 21:28 (UTC) CTD station 228 (F10)
- > 22:04 (UTC) CTD station 229 (F9)
- > 22:41(UTC) CTD station 230 (F8)

23:00 Shift change (Thursday 05.03 local time)

- > 23:20 (UTC) CTD station 231 (F07)
- > 00:07 (UTC) CTD station 232 (F06)
- > 00:46 (UTC) CTD station 233 (F05)
- > 01:20 (UTC) CTD station 234 (F04)
- > 02:05 (UTC) CTD station 235m (F03)
- > 02:46 (UTC) CTD station 236 (F02)
- > Niskin 2 should work again but to be sure fire both niskin 2 and 3 at same depth

05:00 Shift change

- > 5:14 (UTC) CTD station 237 (L7), bottle 2 is leaking
- > 05:53 (UTC) CTD station 238 (L6)
- > 07:01 (UTC) CTD station 239 (L5)
- > 07:40 (UTC) CTD station 240 (L4)
- > 08:03 (UTC) CTD station 241 (L3)
- > 9:50 (UTC) Technical stop. The GEOF 232 Students from the first leg will leave. The second leg students will get on board.
- > 10:22 (UTC) CTD station 242 (L2)
- > 10:36 (UTC) station 243 (L2)
- > 10:58 (UTC) CTD station 244 (L1)

11:00 Shift change

- > 12:00 Martine Light measurements with winch (L6). Down to approx. 70 m.
- > 12:22 CTD station 245 at L6 Calibration of SBE37 5446, 8795 & Concerto, Light measurements. Five minutes at bottom + two casts in one.

17:00 Shift change

- > 17:22 Full CTD station 246 at L1
- > 18:45 Bottle 4 was broken, but it was repaired
- > 19:05 (UTC) CTD station 247 (Sognesjøen)
- > 20:07 (UTC) CTD station 248 (S_T_5)
- > 20:27(UTC) CTD station 249(S_T_4)
- > 20:45 (UTC) CTD station 250(S_T_3)

>21:08 (UTC) CTD station 251 (S_T_2)

> 21:25 (UTC) CTD station 252 (S_T_1)

> 22:48 (UTC) CTD station 253 (S_dyp_2M)

23:00 Shift change (Friday 06.03 local time)

> Notes on salinity measurements:

5 Salinity bottles cannot be related to stations and depths:

- Bottle 07023 Bottle 07027 Bottle 07031 – probably from station 167, 497m depth Bottle 07032 Bottle 07035 – probably from station 167, 194m depth
- Some of them can probably be related to stations, where salinity measurements were not

marked by bottle number. This occurred at:

Station 246, 500.9 m depth

Station 250, 11 m depth

05:00 Shift change

> No log entries

11:00 Shift change

> 12:11 (UTC) CTD station H3 (Water Samples and light sensor attached for Martine)

> 13:11 (UTC) CTD station 256 (m26/xs2 Martine, Light Measurements for Martine)

> 13:30 (UTC) TriOS Light measurements with winch (Martine).

> 13:57 (UTC) CTD station 257 (m26/xs2 Martine, calibrating SBE37 5446)

>First team went on the working boat. Occurred between Fossheim and Stigavika; Deployed Drifters, Helge Boat towing, Mini-CTD section

> 15:00 (UTC) Back on boat

> 15:15 (UTC) Second team went on the working boat. Occurred in Masfjorden, took isotope samples, Dropped Lise of in Matre

> 16:15 (UTC) Back on boat

17:00 Shift change

> 18:41 (UTC) MSS session run and finished, Moorings were cleaned and readied for deployment tomorrow.

> 21:21 (UTC) First CTD at M7 of slow section (1 hour standing for ADCP and LIDAR to sample data), station 258

> 22:35 (UTC) CTD station 259 (M6, 1 hour)

23:00 Shift change (Saturday 07.03 local time)

> 23:40 Flushing at the portasal did not work

- > 23:45 (UTC) CTD station 260 (M5, 1 hour)
- > 00:04 (UTC) CTD station 261 (M5, 1 hour)
- > 01:06 (UTC) CTD station 262 (M4, 1 hour)
- > 02:17: (UTC) CTD station 263 (M2, 1 hour)
- > 03:25: (UTC) CTD station 264 (M1, 1 hour)

> 04:25 (UTC) Head to M7 at <0.5 knots to get ADCP and LIDAR data, 08:00 Intended time of arrival

05:00 Shift change

> 7:10 (UTC) Continue with preparing the moorings for redeployment.

> 9:15 (UTC) Mooring lowered into the deep part of the fjord basin

> 10:20 (UTC) Sill mooring lowered

>10:36 (UTC) CTD station 265 (Control CTD for the Sill Mooring)

11:00 Shift change

> 11:33 (UTC) CTD at M26

> 13:19 (UTC) CTD station 267 (salt for IMR). Calibration of deep mooring.

> 14:10 (UTC) Team 2 left on working boat; took isotope samples and mini-CTD cross-sections

> 15:30 (UTC) Ran Helge Boat across same section of Masfjorden between Andvika and

Mollandsvågen described above.

> 16:15 (UTC) Back on boat

17:00 Shift change

> 17:36 (UTC) CTD station 268

17:42 Echo radar depth changed suddenly from 400m to \sim 200m depth, CTD hit the bottom, came up upside down, but seems to be fine.

- > 17:45 CTD on deck
- > 18:45 (UTC) CTD station 269 (???)
- > 19:54 (UTC) CTD station 270
- > 21:06 (UTC) CTD station 271
- > 22:16 (UTC) CTD station 272

23:00 Shift change (Sunday 08.03 local time)

> 23:33 (UTC) CTD station 273

>00:39 (UTC) Head to station nr 268 and 273, low speed for ADCP and LIDAR

> 01:20 (UTC) Head back to Bergen

Appendix B: List of CTD stations

CTD file w. St. name Date Date Date UTC Depth Latitude / N Longitude / E samples name # year month day hh:mm m deg min deg min F1 13:13 51.787 41.447 D mooring 1 17:00 52.202 22.238 M35 19:40 33.090 52.305 M34 20:02 52.280 32.072 M33 20:24 51.993 30.589 M32 20:58 52.496 29.734 M31 21:23 52.903 28.415 M30 21:44 52.901 28.417 M29 22:12 27.340 52.741 M28 22:38 52.546 26.332 23:05 M27 52.466 25.552 M26 23:57 52.366 24.991 M26 24.991 00:14 52.366 M25 01:14 52.358 23.338 M24 01:50 52.358 23.336 M23 02:26 51.790 21.258 M22 03:01 51.093 21.016 M21 03:29 50.941 20.905 M20 03:58 50.557 20.878 M19 20.874 04:30 50.353 M18 05:09 50.140 20.826 M17 05:23 49.807 20.787 M16 05:43 49.535 20.807 M15 6:15 48.989 19.288

Table 25. List of CTD stations listed by the time of measurement.

48.989 19.288 ---------M_light_1 15:46 48.408 19.215 M16 19:56 48.536 20.777

M14	194	2020	3	3	20:53	202	60	48.295	5	19.060	2
M10	195	2020	3	3	21:18	134.9	60	47.395	5	16.316	1
M09	196	2020	3	3	21:34	144.4	60	47.173	5	16.128	3
M08	197	2020	3	3	21:58	176.4	60	46.869	5	15.024	1
M07	198	2020	3	3	22:14	134.9	60	46.514	5	14.230	2
M06	199	2020	3	3	22:31	371.7	60	46.224	5	13.579	3
M05	200	2020	3	3	22:57	563	60	46.020	5	13.087	2
M04	201	2020	3	3	23:37	668	60	45.895	5	12.817	1
M03	202	2020	4	3	80:00	351	60	45.810	5	12.587	3
M02	203	2020	4	3	00:42	94	60	45.731	5	12.397	1
M01	204	2020	4	3	00:57	69	60	45.587	5	11.879	2
F25	205	2020	4	3	02:16	88	60	38.880	5	26.160	3
F24	206	2020	4	3	02:40	156	60	39.316	5	25.405	2
F23	207	2020	4	3	03:03	228	60	39.738	5	24.282	1
F22	208	2020	4	3	03:28	279	60	40.790	5	22.640	3
F21	209	2020	4	3	03:58	228	60	41.537	5	20.940	1
F20	210	2020	4	3	04:18	230	60	42.038	5	21.401	2
F19	211	2020	4	3	04:43	350	60	42.728	5	21.425	3
F18	212	2020	4	3	5:16	680	60	43.554	5	21.740	2
F17	213	2020	4	3	5:56	680	60	43.972	5	20.091	1
M26	214	2020	4	3	9:09	478	60	52.335	5	25.015	12
M28	215	2020	4	3	10:40	420	60	52.564	5	26.377	
H3A	216	2020	4	3	11:55	123	60	54.266	5	30.599	10
H3B	217	2020	4	3	12:50	123	60	54.268	5	30.598	12
M26	218	2020	4	3	15:15	484	60	52.307	5	24.979	12
M13	219	2020	4	3	16:32	64	60	48.341	5	18.186	2
M12	220	2020	4	3	16:48	98	60	48.317	5	17.766	1
M11	221	2020	4	3	17:02	199	60	48.293	5	17.069	2
F16	222	2020	4	3	17:44	674	60	44.243	5	19.358	3
F15	223	2020	4	3	18:21	669	60	44.290	5	18.864	2
F14	224	2020	4	3	19:02	593	60	45.035	5	16.743	1
F13	225	2020	4	3	19:41	676	60	45.186	5	15.459	3
F12	226	2020	4	3	20:21	678	60	45.620	5	14.171	1
F11	227	2020	4	3	20:54	662	60	45.901	5	12.809	2
F10	228	2020	4	3	21:28	622	60	46.194	5	11.823	3
F9	229	2020	4	3	22:04	474	60	46.736	5	11.034	2
F8	230	2020	4	3	22:41	575	60	47.470	5	07.887	1
F7	231	2020	4	3	23:20	530	60	48.044	5	5.642	3

F6	232	2020	5	3	00:07	541	60	49.820	5	3.358	1
F5	233	2020	5	3	00:46	354	60	50.150	5	0.341	2
F4	234	2020	5	3	01:20	424	60	51.26	4	57.554	3
F3	235	2020	5	3	02:05	458	60	51.203	4	52.480	2
F2	236	2020	5	3	02:46	423	60	50.966	4	46.899	1
L7	237	2020	5	3	05:15	309	60	39.733	5	13.009	4
L6	238	2020	5	3	05:53	442	60	41.100	5	10.258	1
L5	239	2020	5	3	07:01	384	60	42.476	5	06.361	4
L4	240	2020	5	3	07:40	253	60	43.502	5	03.154	1
L3	241	2020	5	3	08:03	184	60	43.927	5	01.599	2
L2	242	2020	5	3	10:22	89	60	43.783	4	59.372	6
L2	243	2020	5	3	10:36	89	60	43.783	4	59.374	3
L1	244	2020	5	3	10:58	70	60	44.120	4	56.960	4
M_light_2	245	2020	5	3	12:26	442	60	41.096	5	510.26	
F1	246	2020	5	3	17:22	501	60	51.696	4	41.317	12
	247	2020	5	3	19:05	302	61	00.989	4	50.388	3
S_T_5	248	2020	5	3	20:07	184	61	04.430	5	04.064	2
S_T_4	249	2020	5	3	20:17	160	61	04.796	5	03.439	1
S_T_3	250	2020	5	3	20:45	174	61	05.107	5	02.894	3
S_T_2	251	2020	5	3	21:08	149	61	05.443	5	02.223	1
S_T_1	252	2020	5	3	21:25	244	61	05.903	5	01.441	2
S_dyp_2M	253	2020	5	3	22:48	1236	61	02.904	5	24.551	12
H7	254	2020	6	3	10:59	109	60	53.668	5	29.424	
H3	255	2020	6	3	12:11	123	60	54.287	5	30.606	10
m26/xs2	256	2020	6	3	13:11	478	60	52.286	5	25.015	
M7	258	2020	6	3	21:21	143	60	46.518	5	14.214	1
M6	259	2020	6	3	22:35	331	60	46.249	5	13.587	1
M5*	260	2020	6	3	23:45	607	60	45.992	5	13.058	0
M5*	261	2020	7	3	00:04	607	60	45.992	5	13.058	1
M4	262	2020	7	3	01:06	666	60	45.881	5	12.790	3
M2	263	2020	7	3	02:17	100	60	45.753	5	12.352	3
M1	264	2020	7	3	03:31	62	60	45.589	5	11.835	3
	265	2020	7	3	10:36	52	60	48.209	5	17.609	1
M26	266	2020	7	3	11:33	480	60	52.284	5	25.013	12
D_mooring_2	267	2020	7	3	13:19	453	60	52.234	5	22.052	1
FX1	268	2020	7	3	17:36	210	60	47.308	5	06.533	1
FX2	269	2020	7	3	18:45	406	60	47.529	5	06.703	1
FX3	270	2020	7	3	19:55	375	60	47.850	5	06.920	1

FX4	271	2020	7	3	21:06	342	60	48.106	5	07.088	1
FX5	272	2020	7	3	22:17	240	60	48.381	5	07.267	1
FX6	273	2020	8	3	23:33	64	60	48.145	5	07.690	2

Table 26. Comments for the CTD-stations

St.name	CTD file name	Comments
F1	167	First CTD
D_mooring_1	168	
M35	169	
M34	170	
M33	171	Samples for oxygen and bottle 2 failed (see diary)
M32	172	
M31	173	Bottle #2 failed
M30	174	Samples for oxygen
M29	175	
M28	176	
M27	177	Samples for oxygen, Used the last oxygen bottles
M26	178	Aborted, cleaning tubes not removed during launch, check computer logs for data
M26	179	Error in logging sheet, niskin 4 should be at 399m, corrected
M25	180	
M24	181	
M23	182	
M22	183	
M21	184	
M20	185	Using the last two bottles (salt, 1. container)
M19	186	No more sample bottles, taking the IMR sample and CTD profile
M18	187	
M17	188	
M16	189	
M15	190	
	191	No stored data
M_light_1	192	IMR sample only, light measurement test (Martine)
		NB; there were two m14 stations on the map, m14 and M14,
		m14 was the actual location
M16	193	
M14	194	
M10	195	

M09	196	
M08	197	
M07	198	
M06	199	
M05	200	
M04	201	
M03	202	
M02	203	
M01	204	
F25	205	
F24	206	
F23	207	
F22	208	
F21	209	
F20	210	
F19	211	
F18	212	
F17	213	
M26	214	
M28	215	
H3A	216	
H3B	217	
M26	218	Bottle 7 didn't fire
M13	219	
M12	220	
M11	221	
F16	222	
F15	223	
F14	224	
F13	225	
F12	226	
F11	227	
F10	228	
F9	229	
F8	230	
F7	231	
F6	232	
F5	233	
F4	234	
F3	235	
F2	236	
L7	237	
L6	238	
L5	239	
L4	240	
L3	241	
L2	242	30 m Test run before with the GoPro attached to the CTD
L2	243	
L1	244	

M_light_2	245	Calibration of RBR Concerto, SBE37 8795, 5446 + Light measurements. Yoyo cast.
F1	246	Full CTD station
	247	
S_T_5	248	
S_T_4	249	
S_T_3	250	
S_T_2	251	
S_T_1	252	
S_depth_2M	253	Bottle 4 was empty
H7	254	
H3	255	Bottle 4 did not fire
m26/xs2	256	
M7	258	
M6	259	
M5*	260	Aborted due to echo sounder issues
M5*	261	Niskin bottle 1 empty
M4	262	Fire 3 to ensure water, salt bottle 07017
M2	263	Fire 3 to ensure water, salt bottle 07006 //
		CTD went up 50m and back to bottom due to radio misunderstanding before firing
		bottles.
M1	264	Fire 3 to ensure water, salt bottle 07001
	265	Sill Mooring Control CTD, one botle at bottom, salinity sample got lost!
M26	266	Niskin 4 did not fire
D_mooring_2	267	
FX1	268	Echo radar depth suddenly changed from 400 to 200 m
		CTD hits bottom, but appears to be fine
FX2	269	Everything sems ok
FX3	270	
FX4	271	
FX5	272	IMR only salinity
FX6	273	

Appendix C: Mooring instrumentation setup

		-					
				08.03.2020	Memory & Battery	& Sensors	
Seaguard	1925	Vel, P, C, T	60	08:00	checked		Victor & Elin
				08.03.2020	Memory & Battery	& Sensors	
	1929	Vel,P,C,T,O	60	08:00	checked	Joan & Elin	
				07.03.2020			
SBE37	12338	СТО	1800	12:00	Memory cleared, N	Joan & Elin	
				07.03.2020			
	8974	СТ	300	12:00	Memory cleared, New batteries		Jacinta & Elin
					Memory cleared,		
	5446	СТ	300	Start Now	New batteries		Elin
				07.03.2020			Elin, Torunn &
RDCP			120	12:00			Jakob D.
				07.03.2020			
SBE56	1946	Т	5	14:00	Memory cleared &battery changed		Joan & Elin
RBR				07.03.2020			
Concerto	60648	CTD	5	12:00	Memory cleared &	battery changed	Elin

Additional settings

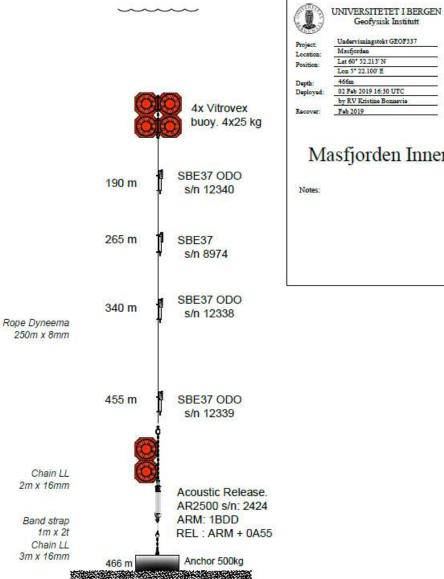
RBR Concerto: Sampling average, Speed 00:00:02, Duration 00:00:01.

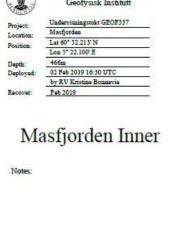
RDCP: cell size 4 m, # of pings 100, ping mode: burst, power level: low, data stored to mmc card

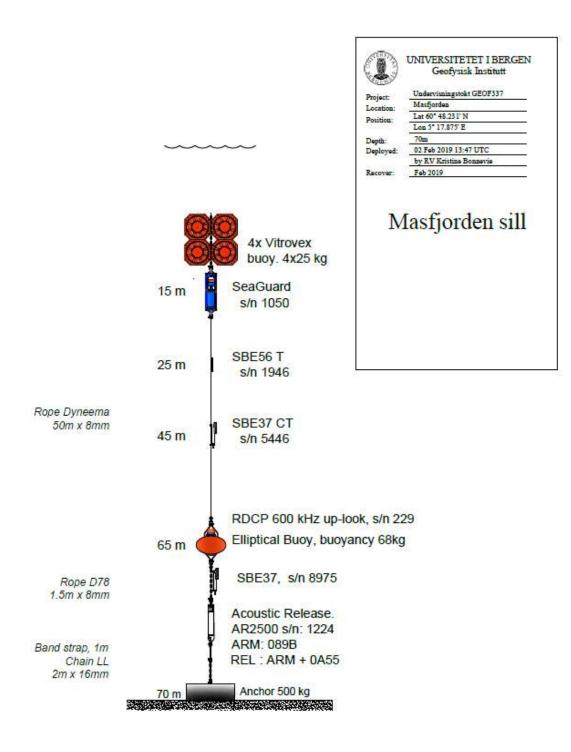
Deployment logs

SBE37-SM V 2.6b SERIAL NO. 5446 06 Mar 2020 20:01:00 not logging: waiting to start at 07 Mar 2020 14:00:00 sample interval = 300 seconds samplenumber = 0, free = 190650do not transmit real-time data output salinity with each sample do not output sound velocity with each sample store time with each sample number of samples to average = 1 serial sync mode disabled wait time after serial sync sampling = 30 seconds internal pump not installed temperature = 17.48 deg C

SBE37SM-RS232 v3.1 **SERIAL NO. 8974** 04 Mar 2020 19:58:38 vMain = 7.02, vLith = 3.18 samplenumber = 0, free = 838860 not logging, waiting to start at 07 Mar 2020 12:00:00 sample interval = 300 seconds data format = converted engineering transmit real-time = no sync mode = no pump installed = no reference pressure = 0.0 decibars


SBE37SM-RS232 v3.1 **SERIAL NO. 8975** 05 Mar 2020 14:59:28 vMain = 6.98, vLith = 3.15 samplenumber = 0, free = 838860 not logging, waiting to start at 07 Mar 2020 12:00:00 sample interval = 300 seconds data format = converted engineering transmit real-time = no sync mode = no pump installed = no reference pressure = 0.0 decibars <Executed/> SBE37SMP-ODO-RS232 v2.3.1 **SERIAL NO. 12338** 04 Mar 2020 19:26:03 vMain = 13.37, vLith = 3.05 samplenumber = 0, free = 524288 not logging, start at 07 Mar 2020 12:00:00 sample interval = 1800 seconds data format = converted engineering output temperature, Celsius output conductivity, S/m output conductivity, S/m output oxygen, ml/L transmit real time data = no sync mode = no reference pressure = 0.0 decibars minimum conductivity frequency = 2886.4 adaptive pump control enabled


Current Configuration: Serial number: 05601946


Firmware version: SBE56 V0.96 Sample period (sec): 300,0 Date/time: 04-Mar-2020 18:48:12 Start sampling at: 07-Mar-2020 14:00:00 Current temperature: 16,9528 Events recorded: 0 Battery changed: 01-Jan-2000 00:00:00 Number of samples in memory: 0 Memory Remaining: 154,28 years [100%] Calculated battery life remaining: 0,00 seconds [0%] Calibration: Date: 2012-07-22 Coefficients: A0 = -1.225091E-03A1 = 3.424143E-04A2 = -6.376194E-06 A3 = 1.977309E-07

Appendix D: Mooring drawings (recovered)

Appendix E: Mooring drawings (deployed)

Appendix E: Mooring drawing (deployed)

Appendix F: Water samples from CTD

Table 27. List of O2 samples.

Cast	Station	Depth	Niskin bottle	Oxygen	Bottle O2 (mL/L)	Bottle O2 (µmol/kg)	CTD O2	Comment
			Bottle	Bottle				
F1	167	151.0	5	16	6.2380	271.2	5.9118	
	167	497.0	1	10	6.2709	272.6	5.8965	O2 Open niskin
	167	151.0	5	17	6.6189	269.5	5.9118	
	167	52.0	8	13	6.7199	292.4	6.4271	
	167	52.0	8	14	6.7220	292.5	6.4271	
	167	5.0	12	12	6.7887	295.8	6.5254	
D_mooring_1	168	464.0	1	19	2.4639	107.1	2.3083	
	168	464.0	2	20	2.4714	107.4	2.3071	
	168	340.0	5	26	2.6764	116.4	2.5639	
	168	340.0	6	27	2.7037	117.5	2.5645	
	168	190.0	9	28	3.8730	168.4	3.6610	
	168	190.0	10	29	3.8645	168.0	3.6665	
M35	169	45.0	2				4.9268	
M34	170	144.0	1				3.4566	
	170	48.0	2				4.9686	
M33	171	183.0	1	82	3.8218	166.2	3.5850	
	171	76.0	2	25	4.9624	215.8	4.6354	02 overtitration
	171	29.0	3	35	5.4229	236.0	5.1509	
M32	172	175.0	1				3.6228	
M31	173	261.8	1				3.1898	
	173		3				5.1816	Depth is missing
M30	174	261.0	1	21	3.4808	151.3	3.1969	
	174	176.0	2	23	3.8188	166.0	3.6401	
	174	48.0	4	30	5.5162	240.0	5.1885	
M29	175	372.0	1	32			3.3925	
	175	43.0	2				5.2850	
M28	176	418.0	1				2.3947	
	176	39.5	2				5.3313	
M27	177	442.0	1	32	2.7142	118.0	2.3549	
	177	262.0	3	33	3.7874	164.7	3.5933	
	177	16.0	4	34	3.7431	162.9	5.2564	O2 wrong volume
M26	179	478.0	1				2.2877	
	179	19.0	10				5.2586	
M25	180	462.0	1				2.3198	
	180	30.0	2				5.5661	
M24	181		1				2.2898	Depth is missing
	181		2				5.2929	Depth is missing
M23	182	462.0	1				2.2731	
	182	27.0	3				5.6917	

Cast	Station	Depth	Niskin bottle	Oxygen	Bottle O2 (mL/L)	Bottle O2 (µmol/kg)	CTD O2	Comment
M22	183	418.0	1		(1112/2)		2.3018	
	183	30.0	2				5.6790	
M21	184	416.0	1				2.3143	
	184	23.0	2				5.5832	
M20	185	303.0	1				2.3423	
	185	32.0	2				5.8368	
M16	193	300.0	1	10	3.7367	162.5	3.5109	
	193	250.0	2	11	3.7484	163.0	3.5549	
	193	200.0	3	12	3.8136	165.8	3.6048	
	193	150.0	4	13	3.8576	167.7	3.6664	
	193	125.0	5	16	3.9873	173.4	3.7825	
	193	100.0	6	17	4.4739	194.5	4.3814	
	193	75.0	7	20	5.3965	234.7	5.2324	
	193	50.0	8	26	5.7517	250.2	5.4899	
	193	30.0	9	27	6.1176	266.2	5.8086	
	193	20.0	10	28	6.2006	269.9	5.9889	
	193	10.0	11	31	6.3145	274.9	6.0158	
	193	5.0	12	35	6.3242	275.5	6.1660	
M14	194	144.0	1					
	194	25.0	2					
M10	195	134.9	1					
M09	196	144.0	1	10	5.5033	239.3	5.2842	
	196	85.0	2	11	5.9092	257.0	5.6236	
	196	10.0	3	12	6.5058	283.3	6.2347	
M08	197	176.4	1					
M07	198	134.9	1					
	198	42.3	2					
M06	199	372.0	1	10	5.6744	246.7	5.3997	
	199	84.0	2	11	5.6734	246.8	5.5256	
	199	22.0	3	12	6.0231	262.2	6.3131	
M05	200	563.0	1					
	200	48.0	2					
M03	202	351.0	1	31	5.8226	253.1	5.5299	
	202	181.0	2	27	5.5967	243.3	5.3095	
	202	39.0	3	28	6.3927	278.2	6.1697	
M01	204	69.0	1					
	204	21.0	2					
F25	205	88.0	1	10	5.2560	228.6	4.9760	
	205	70.0	2	11	5.4412	236.7	5.1926	
	205	60.0	3	12	5.8008	252.4	5.6318	
F24	206	156.0	1					
	206	57.0	2					
F22	208	279.0	1	27	5.1477	223.8	4.8768	
	208	213.0	2	28	5.3028	230.6	5.0823	

Cast	Station	Depth	Niskin bottle	Oxygen	Bottle O2	Bottle O2 (µmol/kg)	CTD	Comment
		= 1 0			(mL/L)	0.64.0	02	
	208	51.0	3	31	6.0163	261.8	5.8412	
F20	210	230.0	1					
	210	86.0	2					
F19	211	350.0	1	27	5.4746	238.0	5.1951	
	211	136.0	2	28	5.4005	234.8	5.1379	
	211	79.0	3	31	5.6032	243.7	5.3381	
F18	212	688.0	1					
F17	213	686.0	1					
M26	214	478.8	1	10	2.4349	105.9	2.2840	
	214	403.0	2	11	2.5513	110.9	2.3904	
	214	264.0	3	12	3.7526	163.2	3.5835	
	214	207.0	4	13	3.8280	166.4	3.6399	
	214	156.0	5	16	3.8352	166.7	3.6578	
	214	104.0	6	17	4.2199	183.5	4.1026	
	214	78.0	7	20	4.8824	212.3	4.6560	
	214	53.0	8	26	5.4317	236.2	5.2255	
	214	32.6	9	27	5.5733	242.5	5.3929	
	214	22.0	10	28	5.4389	236.7	5.4905	
	214	12.0	11	35	5.7345	249.6	5.4828	
	214	12.0	11	31	5.2725	229.5	5.4828	
M28	215	125.0	1		-0.0092	-0.4	0.0293	
	215	100.0	2		-0.0091	-0.4	0.092	
	215	100.0	3					
	215	75.0	4		-0.0090	-0.4	0.0341	
	215	50.0	6		0.7103	30.9	0.5658	
	215	30.0	7		5.0792	221.1	4.8101	
	215	20.0	8		5.1668	224.9	4.9379	
	215	10.0	9		5.2856	230.1	5.0530	
	215	5.0	10		5.2842	230.1	5.2764	
M13	219	64.0	1					
	219	11.0	2					
M11	221	192.0	1					
	221	33.0	2					
F16	222	676.0	1	32	5.4858	238.5	5.1805	
	222	361.0	2	33	4.5415	197.4	5.3824	
	222	83.0	3	34	4.8472	210.8	5.4424	
F15	223	668.9	1		110772	210.0	3.1424	
115	223	73.0	2					
F14	223	594.0	1					
F14 F13	224	678.0	1	13	5.4974	239.0	7.1704	
F12								
	225	332.0	2	14	5.7489	249.9	5.4710	
E4.0	225	76.0	3	17	5.8033	252.4	5.5308	
F12	226	676.0	1					
F11	227	662.0	1					

Cast	Station	Depth	Niskin bottle	Oxygen	Bottle O2	Bottle O2 (µmol/kg)	CTD	Comment
	227	05.1	2		(mL/L)		02	
F10	227	85.1	2	10	F 4001	220.7	F 1040	
F10	228	621.9	1	13	5.4901	238.7	5.1849	
	228	362.2	2	14	5.8117	252.7	5.5153	
500	228	64.6	3	17	6.0914	265.0	5.8123	
F09	229	474.0	1					
500	229	77.0	2					
F08	230	575.0	1	20	E 4764	222.0	F 4764	
F07	231	530.0	1	30	5.4761	238.0	5.1764	
	231	371.0	2	31	5.9853	260.2	5.7008	
	231	141.0	3	32	5.8023	252.1	5.5648	
F5	233	354.0	1					
	233	61.0	2					
F4	234	424.0	1	29	6.1517	267.4	5.8655	
	234	234.0	2	33	5.8191	253.0	5.5476	
	234	9.0	3	34	6.8359	297.9	6.6436	
F3	235	458.0	1					
	235	75.0	2					
L7	237	303.0	1	30	4.7706	207.7	4.5210	
	237	115.0	3	31	4.4281	192.8	4.2131	
	237	54.0	4	32	5.6843	247.5	5.4793	
L6	238	437.0	1					
L5	239	384.5	1	26	4.7967	208.8	4.5246	
	239		2	27	4.4886	195.4	4.2692	Depth is missing
	239	32.0	4	25	6.3688	277.4	6.1361	
L4	240	244.0	1					
L3	241	174.0	1					
	241	57.0	2					
L2	243	78.0	1	13	6.6972	291.6	6.4303	
	243	27.0	2	14	6.6884	291.3	6.4217	
	243	7.0	3	17	6.7760	295.4	6.5290	
L1	244	60.0	1	34	6.5791	286.3	6.2865	
	244	33.0	3	30	6.6711	290.4	6.4152	
	244	5.0	4	31	6.8382	298.02	6.5583	
F1	246	500.9	1	18	6.2900	273.4	5.9682	
	246	401.4	2	19	6.2743	272.7	5.9587	
	246	300.4	3	20	6.2177	270.3	5.9042	
	246	196.6	4	21	6.2159	270.2	5.6476	
	246	150.2	5	23	6.0022	261.0	5.6228	
	246	100.5	6	25	6.3216	274.9	6.0275	
	246	49.3	8	26	6.3358	275.7	6.3864	
	246	29.1	9	27	6.9394	309.0	6.5234	
	246	20.3	10	28	6.8844	299.7	6.6137	
	246	10.7	11	30	6.9161	301.2	6.6447	
	246	5.1	12	31	6.9170	301.4	6.6481	

Cast	Station	Depth	Niskin bottle	Oxygen	Bottle O2	Bottle O2 (µmol/kg)	CTD	Comment
					(mL/L)		02	
	247	321.0	1	32	6.0257	262.0	5.7404	
	247	64.3	2	35	6.4934	282.5	6.2878	Cast missing
	247	28.4	3	33	6.5554	285.4	6.2815	
S_T_5	248	176.0	1					
	248	35.0	2					
S_T_3	250	163.0	1	30	5.9788	260.0	5.6782	
	250	37.0	2	34	6.5365	284.6	6.2823	
	250	11.0	3	82	7.3325	319.7	7.0849	
S_T_2	252	236.0	1					
	252	13.2	2					
S_dyp_2M	253	1252.0	1	17	4.3404	188.7	4.0486	
	253	999.0	2	18	4.4118	191.8	4.1427	
	253	804.0	3	19	4.5247	196.7	4.2508	
	253	403.0	5	20	5.3537	232.7	5.0996	
	253	300.0	6	21	5.5547	241.5	5.2270	
	253	199.0	7	23	5.7333	249.3	5.3647	
	253	152.0	8	25	5.7774	251.2	5.5378	
	253	102.0	9	26	5.9887	260.4	5.7321	
	253	53.0	10	28	6.2124	270.3	5.9591	
	253	33.0	11	29	6.5285	284.1	6.3128	
	253	13.0	12	32	6.7784	295.5	6.6120	
H7	254	98.3	1	18	0.0018	0.1	0.0320	
	254	85.0	2	20	0.0018	0.1	0.0310	
	254	73.5	4	23	0.0018	0.1	0,0325	
	254	47.7	6	25	1.4148	63.2	1.3972	
	254	37.0	7	28	4.1607	185.9	4.1657	
	254	22.0	8	29	5.3512	239.0	5.1308	
	254	9.5	9	30	5.4855	245.1	5.2696	
	254	4.5	10	32	6.3110	273.0	6.4013	
M07	258	134.0	1					
M06	259	340.0	1					
M04	262	666.0	1					
M02	263	100.0	1					
M01	264	65.0	1					
M01	265	525.0	1					
D_mooring_2	267	453.0	1					
	H3A	125.0	1	14				
	H3A	100.0	2	14				
	H3A	75.0	4	19				
	H3A	50.0	6	21				
	H3A	30.0	7	21				
		20.0	8					
	H3A		8 9	25				
	H3A	10.0		29				
	H3A	5.0	10	30				<u> </u>

Table 28. List of salinity samples

Cast	Station	Niskin	Depth	CTD Salinity	Bottle Salinity	Salinity offset	Corr Salinity
F1	167	5	151	34.8506			
	167	1	497	35.1065			
	167	5	151	34.8506			
	167	8	52	33.8018			
	167	8	52	33.8018			
	167	12	5	32.0343			
D_mooring_1	168	1	464	34.9818	34.9711	-0.0107	34.9709
	168	2	464	34.982			34.9711
	168	5	340	34.9764			34.9655
	168	6	340	34.9763			34.9654
	168	9	190	34.9271	34.9160	-0.0111	34.9162
	168	10	190	34.927			34.9161
M35	169	2	45	34.1784	34.1747	-0.0037	34.1747
M34	170	1	144	34.9125	34.8986	-0.0139	34.9086
	170	2	48	34.2159	34.2220	0.0061	34.2120
M33	171	1	183	34.9205	34.9090	-0.0115	34.9485
	171	2	76	34.52			34.5480
	171	3	29	33.99	34.0575	0.0675	34.0180
M32	172	1	175	34.9243	34.9133	-0.0110	34.9133
M31	173	1	261.8	34.9563	34.9424	-0.0139	34.9554
	173	3		34.2564	34.2686	0.0122	34.2555
M30	174	1	261	34.9555	34.9405	-0.0150	34.9604
	174	2	176	34.9276			34.9325
	174	4	48	34.1906	34.2154	0.0248	34.1955
M29	175	1	372	34.9799	34.9692	-0.0107	34.9987
	175	2	43	34.081	34.1293	0.0483	34.0998
M28	176	1	418	34.9803	34.9693	-0.0110	34.9732
	176	2	39.5	34.0764	34.0731	-0.0033	34.0693
M27	177	1	442	34.9809	34.9686	-0.0123	34.9797
	177	3	262	34.9446			34.9434
	177	4	16	33.7582	33.7680	0.0098	33.7570
M26	179	1	478	34.9815	34.9699	-0.0116	34.9955
	179	10	19	33.763	33.8027	0.0397	33.7770
M25	180	1	462	34.9813	34.9694	-0.0119	34.9876
	180	2	30	33.8278	33.8522	0.0244	33.8341
M24	181	1		34.9814	34.9682	-0.0132	34.9989
	181	2		33.5707	33.6189	0.0482	33.5882
M23	182	1	462	34.9816	34.9704	-0.0112	34.9776
	182	3	27	33.7516	33.7548	0.0032	33.7476
M22	183	1	418	34.9803	34.9686	-0.0117	34.9860
	183	2	30	33.7137	33.7368	0.0231	33.7194
M21	184	1	416	34.9802	34.9695	-0.0107	34.9715

Cast	Station	Niskin	Depth	CTD Salinity	Bottle Salinity	Salinity offset	Corr Salinity
	184	2	23	33.6918	33.6852	-0.0066	33.6831
M20	185	1	303	34.9794	34.9656	-0.0138	34.9699
	185	2	32	33.7497	33.7445	-0.0052	33.7402
M16	193	1	300	34.935	34.9246	-0.0104	34.9821
	193	2	250	34.9336			34.9807
	193	3	200	34.9287			34.9758
	193	4	150	34.9198			34.9669
	193	5	125	34.9004			34.9475
	193	6	100	34.7905			34.8376
	193	7	75	34.518			34.5651
	193	8	50	34.2037			34.2508
	193	9	30	33.6563			33.7034
	193	10	20	33.2752	33.3798	0.1046	33.3223
	193	11	10	33.1204			33.1675
	193	12	5	32.2824			32.3295
M14	194	1	144	34.9151	34.9028	-0.0123	35.0400
	194	2	25	33.259	33.5212	0.2622	33.3839
M10	195	1	134.9	34.8077	34.7865	-0.0212	34.7865
M09	196	1	144	34.822	34.8001	-0.0219	34.8402
	196	2	85	34.3965			34.4147
	196	3	10	32.7766	32.8348	0.0582	32.7948
M08	197	1	176.4	34.8451	34.8338	-0.0113	34.8338
M07	198	1	134.9	34.814	34.7920	-0.0220	34.8119
	198	2	42.3	33.8792	33.8970	0.0178	33.8771
M06	199	1	372	35.0579	35.0457	-0.0122	35.0457
	199	2	84	34.4666			34.4544
	199	3	22	33.1884			33.1762
M05	200	1	563	35.0978	35.0885	-0.0093	35.0972
	200	2	48	33.9334	33.9415	0.0081	33.9328
M03	202	1	351	35.076	35.0656	-0.0104	35.1076
	202	2	181	34.9608			34.9924
	202	3	39	33.6256	33.6992	0.0736	33.6572
M01	204	1	69	34.1795	34.1593	-0.0202	34.2136
	204	2	21	32.6134	32.7017	0.0883	32.6475
F25	205	1	88	34.6369			
	205	2	70	34.3358			
	205	3	60	33.914			
F24	206	1	156	34.8882	34.8654	-0.0228	34.9301
	206	2	57	33.7125	33.8192	0.1067	33.7544
F22	208	1	279	34.937	34.9266	-0.0104	34.9766
	208	2	213	34.9302			34.9698
	208	3	51	33.7703	33.8598	0.0895	33.8099
F20	210	1	230	34.9877	34.9733	-0.0144	34.9573
	210	2	86	34.5778	34.5314	-0.0464	34.5474
F19	211	1	350	35.0041			

Cast	Station	Niskin	Depth	CTD Salinity	Bottle Salinity	Salinity offset	Corr Salinity
	211	2	136	34.8683			
	211	3	79	34.4376			
F18	212	1	688	35.0998	35.0905	-0.0093	35.0905
F17	213	1	686	35.0902	35.0891	-0.0011	35.0891
M26	214	1	478.8	34.979	34.9688	-0.0102	34.9912
	214	2	403	34.9777			34.9899
	214	3	264	34.9416			34.9538
	214	4	207	34.9273			34.9395
	214	5	156	34.9176			34.9298
	214	6	104	34.8266			34.8388
	214	7	78	34.5737			34.5859
	214	8	53	34.5737			34.5859
	214	9	32.6	33.8746			33.8868
	214	10	22	33.6863	33.7208	0.0345	33.6985
	214	11	12	33.4933			33.5055
	214	11	12	33.4933			33.5055
M28	215	1	125	34.7461			34.7536
	215	2	100	34.7434			34.7509
	215	3	100	34.7435	34.7323	-0.0112	34.7510
	215	4	75	34.7267			34.7342
	215	6	50	34.6328			34.6403
	215	7	30	33.8444			33.8519
	215	8	20	33.7375	33.7637	0.0262	33.7450
	215	9	10	33.5839			33.5914
	215	10	5	33.0985			33.1060
M13	219	1	64	34.3251	34.1360	-0.1891	34.2057
	219	2	11	32.7308	32.6811	-0.0497	32.6114
M11	221	1	192	34.9129	34.9002	-0.0127	34.9283
	221	2	33	33.6521	33.6956	0.0435	33.6675
F16	222	1	676	35.0999	35.0869	-0.0130	35.0869
	222	2	361	35.054			35.0410
	222	3	83	34.4253			34.4123
F15	223	1	668.9	35.0996	35.0891	-0.0105	35.0975
	223	2	73	34.2973	34.3037	0.0064	34.2952
F14	224	1	594	35.0965	35.0848	-0.0117	35.0848
F13	225	1	678	35.1	35.0878	-0.0122	35.1008
	225	2	332	35.0655			35.0663
	225	3	76	34.3545	34.3682	0.0137	34.3553
F12	226	1	676	35.0996	35.0875	-0.0121	35.0875
F11	227	1	662	35.0991	35.0870	-0.0121	35.1227
	227	2	85.1	34.325	34.3844	0.0594	34.3486
F10	228	1	621.9	35.0973	35.0859	-0.0114	35.0859
	228	2	362.2	35.0783			35.0669
	228	3	64.6	34.1173			34.1059
F09	229	1	474	35.0862	34.3330	-0.7532	35.1027

Cast	Station	Niskin	Depth	CTD Salinity	Bottle Salinity	Salinity offset	Corr Salinity
	229	2	77	34.287	35.0732	0.7862	34.3035
F08	230	1	575	35.0974	35.0863	-0.0111	35.0863
F07	231	1	530	35.0959	35.0852	-0.0107	34.5998
	231	2	371	35.0754			34.5793
	231	3	141	35.7974	34.8158	-0.9816	35.3013
F5	233	1	354	35.0791	35.0682	-0.0109	35.0750
	233	2	61	33.9391	33.9418	0.0027	33.9350
F4	234	1	424	35.0886			
	234	2	234	35.0376			
	234	3	9	31.6727			
F3	235	1	458	35.0865	35.0788	-0.0077	35.0735
	235	2	75	34.156	34.1376	-0.0184	34.1430
L7	237	1	303	33.1559	33.1478	-0.0081	33.1477
	237	3	115	33.1341	33.1258	-0.0083	33.1259
	237	4	54	32.6052			32.5970
L6	238	1	437	33.1569	33.1476	-0.0093	33.1476
L5	239	1	384.5	33.1565	33.1476	-0.0089	33.1587
	239	2	123.6	33.1391			33.1413
	239	4	32	32.2302	32.2435	0.0133	32.2324
L4	240	1	244	33.1537	33.1453	-0.0084	33.1453
L3	241	1	174	33.1492	33.1396	-0.0096	33.1436
	241	2	57	32.4192	32.4176	-0.0016	32.4136
L2	243	1	78	32.6179	32.6053	-0.0126	32.6160
	243	2	27	32.2518			32.2499
	243	3	7	31.2398	31.2486	0.0088	31.2379
L1	244	1	60	33.523	33.5081	-0.0149	33.4439
	244	3	33	33.2074			33.1283
	244	4	5	31.5427	31.3995	-0.1432	31.4636
F1	246	1	500.9	35.1289			
	246	2	401.4	35.1121			
	246	3	300.4	35.0614			
	246	4	196.6	34.9663			
	246	5	150.2	34.8727			
	246	6	100.5	34.3744			
	246	8	49.3	33.7122			
	246	9	29.1	32.9974			
	246	10	20.3	32.4714			
	246	11	10.7	31.90			
	246	12	5.1	31.7724			
	247	1	321	35.0001	34.9908	-0.0093	34.9908
	247	2	64.3	33.9325			33.9232
	247	3	28.4	32.8418			32.8325
S_T_5	248	1	176	34.91	34.8858	-0.0242	34.9388
	248	2	35	33.3487	33.4305	0.0818	33.3775
S_T_3	250	1	163	34.8458	34.8421	-0.0037	34.8421

Cast	Station	Niskin	Depth	CTD Salinity	Bottle Salinity	Salinity offset	Corr Salinity
	250	2	37	32.971			32.9673
	250	3	11	31.0245			31.0208
S_T_2	252	1	236		35.0376		
	252	2	13.2		34.5568		
S_dyp_2M	253	1	1252	35.0508			35.0502
	253	2	999	35.0497	35.0376	-0.0121	35.0491
	253	3	804	35.046			35.0454
	253	5	403	34.9977			34.9971
	253	6	300	34.98			34.9762
	253	7	199	34.9101			34.9095
	253	8	152	34.8387			34.8381
	253	9	102	34.5458	34.5568	0.0110	34.5452
	253	10	53	33.8415			33.8409
	253	11	33	33.4037			33.4031
	253	12	13	31.4013			31.4007
H7	254	1	98.3		34.7332		
	254	2	85		34.7287		
	254	4	73.5				
	254	6	47.7				
	254	7	37				
	254	8	22				
	254	9	9.5				
	254	10	4.5				
M07	258	1	134		34.7783		
M06	259	1	340		35.0507		
M04	262	1	666		35.0892		
M02	263	1	100		34.4389		
M01	264	1	65		33.8098		
M01	265	1	525				
D_mooring_2	267	1	453		34.9796		
	H3A						
	H3A						
	H3A						
	H3A						
	H3A						
	H3A						
	H3A						
	H3A						

Appendix G: List of MSS-stations

	00	ate/UTC		Time	/UTC	E, Depth	Latitude/ N		Longitude/ E		Longitude/ E		CTD station	Comments
name -	year	mon	Dd	hh	min	m	deg	min	deg	min	(sta0)			
2	2020	3	3	7	24	111	60	48,360	5	19,262		1st section		
3	2020	3	3	7	45	70	60	<u>48,292</u>	5	18,098				
4	2020	3	3	7	58	205	60	48,205	5	16,681				
5	2020	3	3	8	30	159	60	48,340	5	19,215		2nd Section		
6	2020	3	3	8	54	100	60	48,290	5	17,908				
7	2020	3	3	9	7	205	60	48,210	5	16,674				
8	2020	3	3	10	2	120	60	48,396	5	19,070		Third section,		
9	2020	3	3	10	17	75	60	48,276	5	18,013				
10	2020	3	3	10	31	205	60	48,229	5	16,608				
11	2020	3	3	11	36	120	60	48,422	5	19,172		4th Section		
12	2020	3	3	11	57	103	60	48,311	5	17,815				
13	2020	3	3	12	10	205	60	48,221	5	16,755				
14	2020	3	3	13	1	126	60	48,458	5	19,014		5th Section		
15	2020	3	3	13	43	93	60	48,258	5	17,891				
16	2020	3	3	13	56	205	60	48,245	5	16,557				
17	2020	3	3	14	32	149	60	48,319	5	18,96		6th Section		
18	2020	3	3	14	59	78	60	48,281	5	17,999				
19	2020	3	3	15	13	205	60	48,22	5	16,775				
20	2020	3	3	16	17	93	60	48,312	5	19,226		7th Section		
21	2020	3	3	16	33	95	60	48,289	5	17,828				
22	2020	3	3	17	3	205	60	48,253	5	16,745				
23	2020	3	3	17	44	134	60	48,388	5	19,096		8th section		
24	2020	3	3	18	1	82	60	48,282	5	17,979				
25	2020	3	3	18	14	206	60	48,21	5	16,673				
26	2020	3	3	18	42	131	60	48,41	5	19,21		9th section		
27	2020	3	3	18	59	74	60	49,55	5	20,82				
28	2020	3	3	19	11	206	60	48,23	5	16,58				
29	2020	3	5	13	22	309	60	39,74	5	13,02		Lurefjord Section		
30	2020	3	5	13	55	442	60	41,12	5	10,19				
31	2020	3	5	14	33	365	60	42,51	5	6,52				
32	2020	3	5	15	1	259	60	43,47	5	3,14				
33	2020	3	5	15	23	178	60	43,85	5	1,79				
34	2020	3	5	15	50	87,8	60	43,78	4	59,39				
35	2020	3	5	16	9	76,6	60	44,07	4	57,07				
36	2020	3	6	7	12	148	60	47,381	5	16,30	M10	Masfjord Section		
37	2020	3	6	7	37	150	60	48,31	5	19,13	M14			
38	2020	3	6	7	59	298	60	49,54	5	20,84	M14			
39	2020	3	6	8	27	426	60	50,98	5	20,84	M21			
40	2020	3	6	8	59	470	60	52,20	5	20,93	M24			
40	2020	3	6	9	31	470	60	52,20	5	22,09	M26			
41	2020	3	6	10	7	280	60	52,89	5	24,89	M31			
42	2020	3	6	10	32	187	60		5					
	2020							52,51		29,57	M32			
44	2020	3 3	6 6	17 17	16 38	188 191	60 60	52,32 52,00	5 5	33,14 30,54	M35 M33			

Appendix H: Notes for next year

Moorings:

- IF RDCP is to be re-deployed, bring a suitable buoy!
- RDCP: be very careful not to squeeze the batterycables so that it doesn't shortcuit again
- Make sure to calibrate conductivity sensors on CTD 😊
- Oxygen sensors needs more than five minutes at depth to settle. After five minutes they where still changing a lot.
- We redesigned the moorings several times onboard make sure to double check that instrument position in drawings are correct.

What to bring:

- Enough salt bottles
- Whiteboard pens
- Modern CTD-computer for CTD-log

Students:

- Assign shift leaders /make a schedule of shift leaders prior to cruise
- Agree on ONE meeting point for hand over.
- Ask students to put name on chargers, phones, cameras etc.
- Bring water bottle (named), thermos cup (named)
- Ask them to bring their own pharmacy (painkillers, sea sickness pills etc)
- Prior to cruise: use one information channel on mittuib.no (discussion page is messy/not up to date, calendare was not updated)
- Make a plan for who learns what when onboard: CTD, oxygen, salinity etc and make sure that everyone knows what to do at CTD before they are left alone

Location:

- Do MSS timeseries/turbulence studies in Lurefjorden. NB: check with captain that he is happy to do so! Quite strong currents and narrow sound.
- Mini-moorings on two sides of the sill here is an option.

Preparation:

- Have student groups inform each other about what they will do.
- Is it possible to have students more involved in preparation/packing
- Do we need packing lists so that we know what we have onboard? (or too much work?)